4,358 research outputs found

    Isolation of nematicidal constituents from essential oil of Kaempferia galanga L rhizome and their activity against Heterodera avenae Wollenweber

    Get PDF
    Purpose: To explore the nematicidal activities of the essential oil of Kaempferia galanga rhizomes and its isolated constituents against Heterodera avenae.Methods: Essential oil of K. galanga rhizomes was obtained by hydrodistillation and characterized by gas chromatography/mass spectrometric (GC/MS) analysis using HP-5MS column. Evaluation of nematicidal toxicity was performed against juveniles (J2) of H. avenae. The bioactive constituent compounds were isolated and identified from the oil based on bioactivity-directed fractionation.Results: Forty-one components were identified and the main components of the essential oil of K. galanga are as follows: ethyl-ρ-methoxy cinnamate (34.79 %), ethyl cinnamate (20.72%), 1,8-cineole (8.96 %), trans-cinnamaldehyde (7.03%) and borneol (5.64 %). The essential oil exhibited nematicidal activity against the cereal cyst nematode with an LC50 value of 91.78 μg/mL. Ethyl cinnamate, ethyl ρ-methoxy cinnamate and trans-cinnamaldehyde (median lethal concentration LC50 = 100.60 μg/ml, 83.04 μg/mL and 94.75 μg/mL, respectively) exhibited stronger nematicidal toxicity than borneol (LC50 = 734.89 μg/mL) and 1,8-cineole (LC50 = 921.21 μg/mL) against the cereal cyst nematode.Conclusion: The results indicate that the essential oil of K. galanga and its isolated constituents have a potential for development into natural nematicides for the control of cereal cyst nematodes.Keywords: Kaempferia galanga, Heterodera avenae, Nematicidal activity, Cereal cyst nematodes, Ethyl cinnamate, Ethyl ρ-methoxy cinnamate, Trans-cinnamaldehyd

    Parton distribution functions and nuclear EMC effect in a statistical model

    Full text link
    A new and simple statistical approach is performed to calculate the parton distribution functions (PDFs) of the nucleon in terms of light-front kinematic variables. Analytic expressions of x-dependent PDFs are obtained in the whole x region. And thereafter, we treat the temperature T as a parameter of the atomic number A to explain the nuclear EMC effect in the region x[0.2,0.7]x \in [0.2, 0.7]. We give the predictions of PDF ratios, and they are very different from those by other models, thus experiments aiming at measuring PDF ratios are suggested to provide a discrimination of different models.Comment: 4 pages, no figure; talk given at the 5th International Conference On Quarks and Nuclear Physics (QNP09), Sep 2009, Beijing Chin

    Fractional phase transitions of RN-AdS black hole at Davies points

    Full text link
    We perform a study of phase transitions of RN-AdS black hole at its Davies points according to a generalized Ehrenfest classification of phase transition established on the basis of fractional derivatives. Davies points label the positions where heat capacity diverges. According to the usual Ehrenfest classification, second-order phase transitions occur there. For RN-AdS black hole, the Davies points can be classified into two types. The first type corresponds to the extreme values of temperature and the second type corresponds to the infection point(namely the critical point) of temperature. Employing the generalized Ehrenfest classification, we find that the orders of phase transition at the two types of Davies points are different. It is 3/23/2-order for the first type and 4/34/3-order for the second type. Thus this finer-grained classification can discriminate phase transitions that are supposed to be in the same category, which may provide some new insights toward a better understanding of black hole thermodynamics.Comment: 13 pages, 4 figures, to be published in Chinese Physics

    Cooling mechanical resonators to quantum ground state from room temperature

    Full text link
    Ground-state cooling of mesoscopic mechanical resonators is a fundamental requirement for test of quantum theory and for implementation of quantum information. We analyze the cavity optomechanical cooling limits in the intermediate coupling regime, where the light-enhanced optomechanical coupling strength is comparable with the cavity decay rate. It is found that in this regime the cooling breaks through the limits in both the strong and weak coupling regimes. The lowest cooling limit is derived analytically at the optimal conditions of cavity decay rate and coupling strength. In essence, cooling to the quantum ground state requires Qm>2.4nthQ_{\mathrm{m}}>2.4n_{\mathrm{th}% }, with QmQ_{\mathrm{m}} being the mechanical quality factor and nthn_{\mathrm{th}} being the thermal phonon number. Remarkably, ground-state cooling is achievable starting from room temperature, when mechanical QQ-frequency product Qmν>1.5×1013Q_{\mathrm{m}}{\nu>1.5}\times10^{13}, and both of the cavity decay rate and the coupling strength exceed the thermal decoherence rate. Our study provides a general framework for optimizing the backaction cooling of mesoscopic mechanical resonators

    Dynamical-Corrected Nonadiabatic Geometric Quantum Computation

    Full text link
    Recently, nonadiabatic geometric quantum computation has been received great attentions, due to its fast operation and intrinsic error resilience. However, compared with the corresponding dynamical gates, the robustness of implemented nonadiabatic geometric gates based on the conventional single-loop scheme still has the same order of magnitude due to the requirement of strict multi-segment geometric controls, and the inherent geometric fault-tolerance characteristic is not fully explored. Here, we present an effective geometric scheme combined with a general dynamical-corrected technique, with which the super-robust nonadiabatic geometric quantum gates can be constructed over the conventional single-loop and two-loop composite-pulse strategies, in terms of resisting the systematic error, i.e., σx\sigma_x error. In addition, combined with the decoherence-free subspace (DFS) coding, the resulting geometric gates can also effectively suppress the σz\sigma_z error caused by the collective dephasing. Notably, our protocol is a general one with simple experimental setups, which can be potentially implemented in different quantum systems, such as Rydberg atoms, trapped ions and superconducting qubits. These results indicate that our scheme represents a promising way to explore large-scale fault-tolerant quantum computation.Comment: 10 pages, 9 figure

    Microstructure and Continuous Phase Transition of the Gauss-Bonnet AdS Black Hole

    Full text link
    The phase transition of the Gauss-Bonnet AdS black hole has the similar property with the van der Waals thermodynamic system. However, it is determined by the Gauss-Bonnet coefficient {\alpha}, not only the horizon radius. Furthermore, the phase transition is not the pure one between a big black hole and a small black hole. With this issue, we introduce a new order parameter to investigate the critical phenomenonand to give the microstructure explanation of the Gauss-Bonnet AdS black hole phase transition. And the critical exponents are also obtained. At the critical pointof the Gauss-Bonnet AdS black hole, we reveal the microstructure of the black hole by investigating the thermodynamic geometry. These results perhaps provide some certain help to deeply explore the black hole microscopic structure and to build the quantum gravity.Comment: 19 pages, 11figure

    High-Q exterior whispering gallery modes in a metal-coated microresonator

    Full text link
    We propose a kind of plasmonic whispering gallery modes highly localized on the exterior surface of a metal-coated microresonator. This exterior (EX) surface mode possesses high quality factors at room temperature, and can be efficiently excited by a tapered fiber. The EX mode can couple to an interior (IN) mode and this coupling produces a strong anti-crossing behavior, which not only allows conversion of IN to EX modes, but also forms a long-lived anti-symmetric mode. As a potential application, the EX mode could be used for a biosensor with a sensitivity high up to 500 nm per refraction index unit, a large figure of merit, and a wide detection range
    corecore