1,063 research outputs found

    Improving Depression Assessment & Management in Heart Failure Patients at the Pali Momi Medical Center

    Get PDF
    D.N.P.D.N.P. Thesis. University of Hawaiʻi at Mānoa 201

    First-principles study of the switching mechanism of [2]catenane molecular electronic devices

    Get PDF
    We present a first-principles study of the coherent charge transport properties of bistable [2]catenane molecular monolayers sandwiched between Au(111) electrodes. We find that conduction channels around the Fermi level are dominated by the two highest occupied molecular orbital levels from tetrathiafulvalene (TTF) and dioxynaphthalene (DNP) and the two lowest unoccupied molecular orbital levels from tetracationic cyclophane (CBPQT(4+)), and the OFF to ON switching results from the energetic shifts of these orbitals as CBPQT(4+) moves from TTF to DNP. We show that the superposition principle can be adopted for predicting the function of the composite device

    Molecular Dynamics Simulation Study on a Monolayer of Half [2]Rotaxane Self-Assembled on Au(111)

    Get PDF
    The self-assembled monolayer (SAM) structure of the tetrathiafulvalene-side half of the Stoddart−Heath type [2]rotaxane on Au(111) surface was investigated using molecular dynamics (MD) simulations. We find that the orientation of the cyclobis(paraquat-p-phenylene) (CBPQT) ring depends dramatically on the coverage, changing in order to obtain highly packed SAMs. The ring lies with its large hollow parallel to the surface at lower coverage (up to one CBPQT per 27 surface Au atoms with a footprint of 1.9 nm^2; 1/27) when free space is available around it, but as the coverage increases (up to one CBPQT per 12 surface Au atoms with a footprint of 0.9 nm^2; 1/12), it tilts completely around its axis and lies with its smaller side (paraquat or phenyl ring) parallel to the surface to accommodate the reduced area available. We find that the best packing densities correspond to one CBPQT per 12−18 surface Au atoms (1/18−1/12) with footprints in the range between 0.9 nm^2 and 1.3 nm^2

    Mechanism of Oxidative Shuttling for [2]Rotaxane in a Stoddart−Heath Molecular Switch: Density Functional Theory Study with Continuum-Solvation Model

    Get PDF
    The central component of the programmable molecular switch demonstrated recently by Stoddart and Heath is [2]rotaxane, which consists of a cyclobis-(paraquat-p-phenylene) ring-shaped shuttle [(CBPQT^(4+))(PF_6^-)_4] encircling a finger and moving between two stations on the finger:  tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene (DNP). We report here a quantum mechanics (QM) study of the mechanism by which movement of the ring (and in turn the on−off switching) is controlled by the oxidation−reduction process. We use B3LYP density functional theory to describe how oxidation of the [2]rotaxane components (in using Poisson−Boltzmann continuum-solvation theory for acetonitrile solution) induces the motions associated with switching (translation of the ring). These calculations support the proposal that oxidation occurs on TTF, leading to repulsion between two positive charge centers (TTF^(2+) and CBPQT^(4+)) that drives the CBPQT^(4+) ring from the TTF^(2+) station toward the neutral DNP station. The theory also supports the experimental observation that the first and second oxidation potentials are nearly the same (separated by 0.09 eV in the QM). This excellent agreement between the QM and experiment suggests that QM can be useful in designing new systems

    Superprotonic phase transition of CsHSO4: A molecular dynamics simulation study

    Get PDF
    The superprotonic phase transition (phase II --> phase I; 414 K) of cesium hydrogen sulfate, CsHSO4, was simulated using molecular dynamics with the "first principles" MSXX force field (FF). The structure, binding energy, and vibrational frequencies of the CsHSO4 monomer, the binding energy of the (H2SO4)2 dimer, and the torsion barrier of the HSO4- ion were determined from quantum mechanical calculations, and the parameters of the Dreiding FF for Cs, S, O, and H adjusted to reproduce these quantities. Each hydrogen atom was treated as bonded exclusively to a single oxygen atom (proton donor), but allowed to form hydrogen bonds to various second nearest oxygen atoms (proton acceptors). Fixed temperature-pressure (NPT) dynamics were employed to study the structure as a function of temperature from 298 to 723 K. In addition, the influence of several force field parameters, including the hydrogen torsional barrier height, hydrogen bond strength, and oxygen charge distribution, on the structural behavior of CsHSO4 was probed. Although the FF does not allow proton migration (i.e., proton jumps) between oxygen atoms, a clear phase transition occurred as demonstrated by a discrete change of unit cell symmetry (monoclinic to tetragonal), cell volume, and molar enthalpy. The dynamics of the HSO4- group reorientational motion also changed dramatically at the transition. The observation of a transition to the expected tetragonal phase using a FF in which protons cannot migrate indicates that proton diffusion does not drive the transition to the superprotonic phase. Rather, high conductivity is a consequence of the rapid reorientations that occur in the high temperature phase. Furthermore, because no input from the superprotonic phase was employed in these simulations, it may be possible to employ MD to hypothesize superprotonic materials

    MOVIN: Real-time Motion Capture using a Single LiDAR

    Full text link
    Recent advancements in technology have brought forth new forms of interactive applications, such as the social metaverse, where end users interact with each other through their virtual avatars. In such applications, precise full-body tracking is essential for an immersive experience and a sense of embodiment with the virtual avatar. However, current motion capture systems are not easily accessible to end users due to their high cost, the requirement for special skills to operate them, or the discomfort associated with wearable devices. In this paper, we present MOVIN, the data-driven generative method for real-time motion capture with global tracking, using a single LiDAR sensor. Our autoregressive conditional variational autoencoder (CVAE) model learns the distribution of pose variations conditioned on the given 3D point cloud from LiDAR.As a central factor for high-accuracy motion capture, we propose a novel feature encoder to learn the correlation between the historical 3D point cloud data and global, local pose features, resulting in effective learning of the pose prior. Global pose features include root translation, rotation, and foot contacts, while local features comprise joint positions and rotations. Subsequently, a pose generator takes into account the sampled latent variable along with the features from the previous frame to generate a plausible current pose. Our framework accurately predicts the performer's 3D global information and local joint details while effectively considering temporally coherent movements across frames. We demonstrate the effectiveness of our architecture through quantitative and qualitative evaluations, comparing it against state-of-the-art methods. Additionally, we implement a real-time application to showcase our method in real-world scenarios. MOVIN dataset is available at \url{https://movin3d.github.io/movin_pg2023/}

    Short-term effects of Theracurmin dose and exercise type on pain, walking ability, and muscle function in patients with knee osteoarthritis

    Get PDF
    The purpose of this study was to investigate the short-term of Theracurmin dose and exercise type on pain, walking ability, and muscle function in patients with knee osteoarthritis. Twenty-five patients with knee osteoarthritis randomly selected to Theracurmin intake (T) group and Theracurmin in combined with exercise (T+E) group. T group (n= 13) was taken orally a capsule of 700 mg, 3 times per day, (total 2,100 mg, 35 mg/kg-body weight). T+E group (n= 12) performed aerobic training of 30-min walking and weight training for increasing leg muscular strength. After treatment, the number of steps, muscle mass, range of motion of knee, and the muscle strength in flexion and extension significantly increased. The percent body fat, visual analogue scale, The Western Ontario and McMaster score, centers of pressure with closed eye, 10-m walking ability, stair ascending speed were significantly decreased after treatment. Although no difference observed between the T and T+E groups, the 4-week intake of Theracurmin with and without exercise appeared to be effective in reducing the pain and enhancing muscular and balancing function. Therefore, Theracurmin intake for early symptoms and additional exercise as symptoms alleviate might be an effective way of delaying and managing osteoarthritis, and additional studies investigating the effects of Theracurmin and exercise on osteoarthritis could be beneficial

    Electron Transport through Cyclic Disulfide Molecular Junctions with Two Different Adsorption States at the Contact: A Density Functional Theory Study

    Get PDF
    1,2-Dithiolane is a promising anchor group for attaching molecules to metal electrodes in molecular junction devices. This five-membered cyclic disulfide adsorbs on Au surfaces either in a cyclic fashion (with its disulfide bond intact, via molecular adsorption) or in an acyclic fashion (with its disulfide bond broken, via dissociative adsorption). Our density functional theory calculations show that the dissociative adsorption is slightly preferred, but both are stable. We also report nonequilibrium Green’s function calculations showing that molecular junctions of cyclic and acyclic 1,2-dithiolanes sandwiched between two gold electrodes exhibit essentially the same insulating current–voltage characteristics at moderate bias voltages, despite the significant difference in their states of adsorption

    Wax Inhibition by Comb-like Polymers: Support of the Incorporation−Perturbation Mechanism from Molecular Dynamics Simulations

    Get PDF
    Deposition of wax on a cold surface is a serious problem in oil production. Progress in developing more effective wax inhibitors has been impeded by the lack of an established mechanism connecting the molecular structure to inhibitor efficiency. Some comb-like polymers having long alkyl side chains are known to decrease the rate of wax formation. Among several possible mechanisms, we investigate here the incorporation−perturbation mechanism. According to this mechanism, the inhibitor molecules in oil are preferentially partitioned (incorporation) toward the wax-rich (amorphous) wax deposits (soft wax), which then serves as a perturbation to slow down the ordering transition of soft amorphous wax into more stable but problematic hard wax crystals. Indeed, molecular dynamics simulations on an effective inhibitor molecule in both the oil phase and in the amorphous wax phase support the idea that the oil-to-wax partition of the inhibitor is energetically favorable. With the inhibitor molecule embedded, the structure of wax crystal is disturbed, significantly decreasing the order and significantly lowering the cohesive energy density relative to that of the pure wax crystal, supporting the slower transition from soft wax to hard wax. Thus, in the presence of an effective wax inhibitor, crystallization (formation of hard wax) is slowed dramatically, so that there is time to flush out the soft wax with a high-pressure flow inside the pipeline. This suggests design principles for developing improved wax inhibitors
    • 

    corecore