1,325 research outputs found

    Redshift drift exploration for interacting dark energy

    Get PDF
    By detecting redshift drift in the spectra of Lyman-α\alpha forest of distant quasars, Sandage-Loeb (SL) test directly measures the expansion of the universe, covering the "redshift desert" of 2z52 \lesssim z \lesssim5. Thus this method is definitely an important supplement to the other geometric measurements and will play a crucial role in cosmological constraints. In this paper, we quantify the ability of SL test signal by a CODEX-like spectrograph for constraining interacting dark energy. Four typical interacting dark energy models are considered: (i) Q=γHρcQ=\gamma H\rho_c, (ii) Q=γHρdeQ=\gamma H\rho_{de}, (iii) Q=γH0ρcQ=\gamma H_0\rho_c, and (iv) Q=γH0ρdeQ=\gamma H_0\rho_{de}. The results show that for all the considered interacting dark energy models, relative to the current joint SN+BAO+CMB+H0H_0 observations, the constraints on Ωm\Omega_m and H0H_0 would be improved by about 60\% and 30--40\%, while the constraints on ww and γ\gamma would be slightly improved, with a 30-yr observation of SL test. We also explore the impact of SL test on future joint geometric observations. In this analysis, we take the model with Q=γHρcQ=\gamma H\rho_c as an example, and simulate future SN and BAO data based on the space-based project WFIRST. We find that in the future geometric constraints, the redshift drift observations would help break the geometric degeneracies in a meaningful way, thus the measurement precisions of Ωm\Omega_m, H0H_0, ww, and γ\gamma could be substantially improved using future probes.Comment: 6 pages, 5 figures; accepted for publication in EPJC. arXiv admin note: text overlap with arXiv:1407.712

    catena-Poly[[(4-amino­benzoato)aqua­silver(I)]-μ-hexa­methyl­enetetramine]

    Get PDF
    In the title coordination polymer, [Ag(C7H6NO2)(C6H12N4)(H2O)]n, the AgI ion is five-coordinated by two carboxyl­ate O atoms from one 4-amino­benzoate anion (L), two N atoms from two different hexa­methyl­enetetramine (hmt) ligands, and one water O atom in a distorted square-pyramidal geometry. The metal atom lies on a mirror plane and the L anion, hmt ligand and water mol­ecule all lie across crystallographic mirror planes. Each hmt ligand bridges two neighboring AgI ions, resulting in the formation of a chain structure along the b axis. The chains are linked into a three-dimensional framework by N—H⋯O and O—H⋯O hydrogen bonds

    Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band

    Get PDF
    A wavelength-swept thulium-doped silica fiber laser using an intracavity rotating slotted-disk wavelength scanning filter in combination with an intracavity solid etalon for passive control of temporal and spectral profiles is reported. The laser yielded a wavelength swept output in a step-wise fashion with each laser pulse separated from the previous pulse by a frequency interval equal to the free-spectral-range of the etalon and with an instantaneous linewidth of <0.05 nm. Scanning ranges from 1905 nm to 2049 nm for a cladding-pumping laser configuration, and from 1768 nm to 1956 nm for a core-pumping laser configuration were achieved at average output powers up to ~1 W

    3-Hydroxy­adamantane-1-acetic acid

    Get PDF
    The crystal structure of the title adamantane derivative, C12H18O3, has been determined by X-ray diffraction. The structure is stabilized by inter­molecular O—H⋯O hydrogen bonds, forming a chain

    Enhanced Neuroprotective Effects by Inter-Ischemia Hypothermia in Cerebral Stroke

    Get PDF
    Background and Purpose. Studies have shown that inter-ischemia hypothermia is able to reduce the size of myocardial infarctions and improve their clinical outcomes. The present study determined whether inter-ischemia hypothermia induced by pharmacological approach induced stronger neuroprotection in ischemic brains. Methods. Adult male Sprague-Dawley rats were studied in 4 groups: (1) sham; (2) stroke; (3) stroke treated with pharmacological hypothermia before reperfusion (inter-ischemia hypothermia); and (4) stroke treated with pharmacological hypothermia after reperfusion is initiated (inter-reperfusion hypothermia). The combination of chlorpromazine and promethazine with dihydrocapsaicin was used to induce hypothermia. To compare the neuroprotective effects of drug-induced hypothermia between the groups, brain damage was evaluated using infarct volume and neurological deficits. In addition, mRNA expressions of NADPH oxidase subunits and glucose transporter subtypes were determined by real-time PCR. ROS production was measured by Flow cytometry assay at the same time points. Results: In both hypothermia groups, cerebral infarct volumes and neurological deficits were reduced. ROS production and the expressions of NOX subunits and glucose transporter subtypes were also significantly reduced in both hypothermia groups as compared to the ischemic group. While there were no statistically significant differences between the two hypothermia groups at 6 h reperfusion, brain damage was significantly further decreased by inter-ischemia hypothermia at 24 h. Conclusion: Inter-ischemia hypothermia and inter-reperfusion hypothermia after stroke induced neuroprotection by reducing oxidative injury, while neuroprotion was more effective with inter-ischemia hypothermia. This study provides a new avenue and reference for a stronger neuroprotective hypothermia before vascular recanalization in stroke patients

    Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: the role of multipole effects

    Full text link
    We investigate theoretically the effects of interaction between an optical dipole (semiconductor quantum dot or molecule) and metal nanoparticles. The calculated absorption spectra of hybrid structures demonstrate strong effects of interference coming from the exciton-plasmon coupling. In particular, the absorption spectra acquire characteristic asymmetric lineshapes and strong anti-resonances. We present here an exact solution of the problem beyond the dipole approximation and find that the multipole treatment of the interaction is crucial for the understanding of strongly-interacting exciton-plasmon nano-systems. Interestingly, the visibility of the exciton resonance becomes greatly enhanced for small inter-particle distances due to the interference phenomenon, multipole effects, and electromagnetic enhancement. We find that the destructive interference is particularly strong. Using our exact theory, we show that the interference effects can be observed experimentally even in the exciting systems at room temperature.Comment: 9 page
    corecore