17,946 research outputs found

    The Neutral Hydrogen Distribution in Merging Galaxies: Differences between Stellar and Gaseous Tidal Morphologies

    Get PDF
    We have mapped the neutral atomic gas (HI) in the three disk-disk merger systems NGC 520, Arp 220, and Arp 299. These systems differ from the majority of the mergers mapped in HI, in that their stellar and gaseous tidal features do not coincide. In particular, they exhibit large stellar tidal features with little if any accompanying neutral gas and large gas-rich tidal features with little if any accompanying starlight. On smaller scales, there are striking anti-correlations where the gaseous and stellar tidal features appear to cross. We explore several possible causes for these differences, including dust obscuration, ram pressure stripping, and ionization effects. No single explanation can account for all of the observed differences. The fact that each of these systems shows evidence for a starburst driven superwind expanding in the direction of the most striking anti-correlations leads us to suggest that the superwind is primarily responsible for the observed differences, either by sweeping the features clear of gas via ram pressure, or by excavating a clear sightline towards the starburst and allowing UV photons to ionize regions of the tails.Comment: 16 pages, 5 figures, uses emulateapj.sty. To appear in the March 2000 issue of AJ. Version with full resolution figures is available via http://www.cv.nrao.edu/~jhibbard/HIdisp/HIdisp.htm

    Elastic metamaterials with simultaneously negative effective shear modulus and mass density

    Full text link
    We propose a type of elastic metamaterial comprising fluid-solid composite inclusions which can possess negative shear modulus and negative mass density over a large frequency region. Such a solid metamaterial has a unique elastic property that only transverse waves can propagate with a negative dispersion while longitudinal waves are forbidden. This leads to many interesting phenomena such as negative refraction, which is demonstrated by using a wedge sample, and a significant amount of mode conversion from transverse waves to longitudinal waves that cannot occur on the interface of two natural solids

    The geometrically-averaged density of states as a measure of localization

    Full text link
    Motivated by current interest in disordered systems of interacting electrons, the effectiveness of the geometrically averaged density of states, ρg(ω)\rho_g(\omega), as an order parameter for the Anderson transition is examined. In the context of finite-size systems we examine complications which arise from finite energy resolution. Furthermore we demonstrate that even in infinite systems a decline in ρg(ω)\rho_g(\omega) with increasing disorder strength is not uniquely associated with localization.Comment: 8 pages, 8 figures; revised text and figure

    Modelling of quantum information processing with Ehrenfest guided tra jectories: a case study

    Full text link
    We apply a numerical method based on multi-configurational Ehrenfest tra jectories, and demonstrate converged results for the Choi fidelity of an entangling quantum gate between two two-level systems interacting through a set of bosonic modes. We consider both spin-boson and rotating wave Hamiltonians, for various numbers of mediating modes (from 1 to 100), and extend our treatment to include finite temperatures. Our results apply to two-level impurities interacting with the same band of a photonic crystal, or to two distant ions interacting with the same set of motional degrees of freedom.Comment: 12 pages, figures aplent

    Not a galaxy: IRAS 04186+5143, a new young stellar cluster in the outer Galaxy

    Get PDF
    We report the discovery of a new young stellar cluster in the outer Galaxy located at the position of an IRAS PSC source that has been previously mis-identified as an external galaxy. The cluster is seen in our near-infrared imaging towards IRAS 04186+5143 and in archive Spitzer images confirming the young stellar nature of the sources detected. There is also evidence of sub-clustering seen in the spatial distributions of young stars and of gas and dust. Near- and mid-infrared photometry indicates that the stars exhibit colours compatible with reddening by interstellar and circumstellar dust and are likely to be low- and intermediate-mass YSOs with a large proportion of Class I YSOs. Ammonia and CO lines were detected, with the CO emission well centred near the position of the richest part of the cluster. The velocity of the CO and NH3_3 lines indicates that the gas is Galactic and located at a distance of about 5.5 kpc, in the outer Galaxy. Herschel data of this region characterise the dust environment of this molecular cloud core where the young cluster is embedded. We derive masses, luminosities and temperatures of the molecular clumps where the young stars reside and discuss their evolutionary stages.Comment: 14 pages, 15 figure

    Schwinger-Boson Mean-Field Theory of Mixed-Spin Antiferromagnet L2BaNiO5L_2BaNiO_5

    Full text link
    The Schwinger-boson mean-field theory is used to study the three-dimensional antiferromagnetic ordering and excitations in compounds L2BaNiO5L_2BaNiO_5, a large family of quasi-one-dimensional mixed-spin antiferromagnet. To investigate magnetic properties of these compounds, we introduce a three-dimensional mixed-spin antiferromagnetic Heisenberg model based on experimental results for the crystal structure of L2BaNiO5L_2BaNiO_5. This model can explain the experimental discovery of coexistence of Haldane gap and antiferromagnetic long-range order below N\'{e}el temperature. Properties such as the low-lying excitations, magnetizations of NiNi and rare-earth ions, N\'{e}el temperatures of different compounds, and the behavior of Haldane gap below the N\'{e}el temperature are investigated within this model, and the results are in good agreement with neutron scattering experiments.Comment: 12 pages, 6 figure
    corecore