6,598 research outputs found

    750 GeV Resonance in the Gauged U(1)′U(1)'-Extended MSSM

    Get PDF
    Recently the ATLAS and CMS collaborations at the LHC announced their observation of a potential 750 GeV di-photon resonance, after analyzing the s=13\sqrt{s}=13 TeV LHC data. This observation has significant implications for low-energy supersymmetry. Beyond the MSSM and the NMSSM, we study the MSSM-extensions with an extra U(1)′U(1)' gauge symmetry. The anomaly cancellation and the spontaneous breaking of the non-decoupled U(1)′U(1)' generically require introducing vector-like supermultiplets (both colored and color-neutral ones) and singlet supermultiplets, respectively. We illustrate that the potential 750 GeV resonance (YY) can be accommodated in various mechanisms, as a singlet-like scalar or pseudoscalar. Three benchmark scenarios are presented: (1) vector-like quarks (VLQ) mediated pp→Y→γγpp \to Y \to \gamma \gamma; (2) scalar VLQ mediated pp→Y→γγpp \to Y \to \gamma \gamma; (3) heavy scalar (pseudo-scalar) H/AH/A associated production pp→H∗/A∗→YH/hpp \to H^*/A^* \to Y H/h. Additionally, we notice that the Z′Z'-mediated vector boson fusion production and Z′Z'-associated production pp→Yqq′pp \to Y qq', if yielding a signal rate of the observed level, might have been excluded by the searches for Z′Z' via Drell-Yan process at the LHC.Comment: v3, figure update with corresponding modification in discussion, version accepted by PL

    Accumulation of Dense Core Vesicles in Hippocampal Synapses Following Chronic Inactivity.

    Get PDF
    The morphology and function of neuronal synapses are regulated by neural activity, as manifested in activity-dependent synapse maturation and various forms of synaptic plasticity. Here we employed cryo-electron tomography (cryo-ET) to visualize synaptic ultrastructure in cultured hippocampal neurons and investigated changes in subcellular features in response to chronic inactivity, a paradigm often used for the induction of homeostatic synaptic plasticity. We observed a more than 2-fold increase in the mean number of dense core vesicles (DCVs) in the presynaptic compartment of excitatory synapses and an almost 20-fold increase in the number of DCVs in the presynaptic compartment of inhibitory synapses after 2 days treatment with the voltage-gated sodium channel blocker tetrodotoxin (TTX). Short-term treatment with TTX and the N-methyl-D-aspartate receptor (NMDAR) antagonist amino-5-phosphonovaleric acid (AP5) caused a 3-fold increase in the number of DCVs within 100 nm of the active zone area in excitatory synapses but had no significant effects on the overall number of DCVs. In contrast, there were very few DCVs in the postsynaptic compartments of both synapse types under all conditions. These results are consistent with a role for presynaptic DCVs in activity-dependent synapse maturation. We speculate that these accumulated DCVs can be released upon reactivation and may contribute to homeostatic metaplasticity

    Evaluation of a wave-vector-frequency-domain method for nonlinear wave propagation

    Get PDF
    A wave-vector-frequency-domain method is presented to describe one-directional forward or backward acoustic wave propagation in a nonlinear homogeneous medium. Starting from a frequency-domain representation of the second-order nonlinear acoustic wave equation, an implicit solution for the nonlinear term is proposed by employing the Green’s function. Its approximation, which is more suitable for numerical implementation, is used. An error study is carried out to test the efficiency of the model by comparing the results with the Fubini solution. It is shown that the error grows as the propagation distance and step-size increase. However, for the specific case tested, even at a step size as large as one wavelength, sufficient accuracy for plane-wave propagation is observed. A two-dimensional steered transducer problem is explored to verify the nonlinear acoustic field directional independence of the model. A three-dimensional single-element transducer problem is solved to verify the forward model by comparing it with an existing nonlinear wave propagation code. Finally, backward-projection behavior is examined. The sound field over a plane in an absorptive medium is backward projected to the source and compared with the initial field, where good agreement is observed
    • …
    corecore