16 research outputs found

    Strain Anisotropy Driven Spontaneous Formation of Nanoscrolls from Two-Dimensional Janus Layers

    Full text link
    Two-dimensional Janus transition metal dichalcogenides (TMDs) have attracted attention due to their emergent properties arising from broken mirror symmetry and self-driven polarisation fields. While it has been proposed that their vdW superlattices hold the key to achieving superior properties in piezoelectricity and photovoltiacs, available synthesis has ultimately limited their realisation. Here, we report the first packed vdW nanoscrolls made from Janus TMDs through a simple one-drop solution technique. Our results, including ab-initio simulations, show that the Bohr radius difference between the top sulphur and the bottom selenium atoms within Janus M_Se^S (M=Mo, W) results in a permanent compressive surface strain that acts as a nanoscroll formation catalyst after small liquid interaction. Unlike classical 2D layers, the surface strain in Janus TMDs can be engineered from compressive to tensile by placing larger Bohr radius atoms on top (M_S^Se) to yield inverted C scrolls. Detailed microscopy studies offer the first insights into their morphology and readily formed Moir\'e lattices. In contrast, spectroscopy and FETs studies establish their excitonic and device properties and highlight significant differences compared to 2D flat Janus TMDs. These results introduce the first polar Janus TMD nanoscrolls and introduce inherent strain-driven scrolling dynamics as a catalyst to create superlattices

    Spatial coherence of room-temperature monolayer WSe2_2 exciton-polaritons in a trap

    Full text link
    The emergence of spatial and temporal coherence of light emitted from solid-state systems is a fundamental phenomenon, rooting in a plethora of microscopic processes. It is intrinsically aligned with the control of light-matter coupling, and canonical for laser oscillation. However, it also emerges in the superradiance of multiple, phase-locked emitters, and more recently, coherence and long-range order have been investigated in bosonic condensates of thermalized light, as well as in exciton-polaritons driven to a ground state via stimulated scattering. Here, we experimentally show that the interaction between photons in a Fabry-Perot microcavity and excitons in an atomically thin WSe2_2 layer is sufficient such that the system enters the hybridized regime of strong light-matter coupling at ambient conditions. Via Michelson interferometry, we capture clear evidence of increased spatial and temporal coherence of the emitted light from the spatially confined system ground-state. The coherence build-up is accompanied by a threshold-like behaviour of the emitted light intensity, which is a fingerprint of a polariton laser effect. Valley-physics is manifested in the presence of an external magnetic field, which allows us to manipulate K and K' polaritons via the Valley-Zeeman-effect. Our findings are of high application relevance, as they confirm the possibility to use atomically thin crystals as simple and versatile components of coherent light-sources, and in valleytronic applications at room temperature.Comment: 13 pages, 4 figure

    The synthesis of competing phase GeSe and GeSe2 2D layered materials.

    No full text
    We demonstrate the synthesis of layered anisotropic semiconductor GeSe and GeSe2 nanomaterials through low temperature (∼400 °C) and atmospheric pressure chemical vapor deposition using halide based precursors. Results show that GeI2 and H2Se precursors successfully react in the gas-phase and nucleate on a variety of target substrates including sapphire, Ge, GaAs, or HOPG. Layer-by-layer growth takes place after nucleation to form layered anisotropic materials. Detailed SEM, EDS, XRD, and Raman spectroscopy measurements together with systematic CVD studies reveal that the substrate temperature, selenium partial pressure, and the substrate type ultimately dictate the resulting stoichiometry and phase of these materials. Results from this work introduce the phase control of Ge and Se based nanomaterials (GeSe and GeSe2) using halide based CVD precursors at ATM pressures and low temperatures. Overall findings also extend our fundamental understanding of their growth by making the first attempt to correlate growth parameters to resulting competing phases of Ge-Se based materials
    corecore