4 research outputs found

    Hydrophobic–Hydrophilic Properties and Characterization of PIM-1 Films Treated by Elemental Fluorine in Liquid Perfluorodecalin

    No full text
    A direct fluorination technique was applied for the surface treatment of PIM-1 films in a liquid phase (perfluorodecalin). The fluorinated samples were analyzed by various instrumental techniques. ATR-IR spectroscopy showed that the fluorination predominantly takes place in methylene- and methyl-groups. Cyano-groups, aromatic hydrogens and the aromatic structure of the PIM-1 repeat unit were shown to be relatively stable at the fluorination conditions. XPS confirmed that the concentration of fluorine, as well as oxygen, in the near surface layer (~1 nm) increases with fluorination time. C1s and O1s surface spectra of the fluorinated PIM-1 samples indicated an appearance of newly-formed C-F and C-O functional groups. Scanning electron microscopy and X-ray energy-dispersive spectroscopy of the fluorinated PIM-1 samples showed an increase of the fluorine concentration at the surface (~0.1–1 ÎŒm) with the treatment duration. Analysis of the slices of the PIM-1 films demonstrated a decline of the fluorine content within several microns of the film depth. The decline increased with the fluorination time. A model of fluorine concentration dependence on the film depth and treatment duration was suggested. A change in the specific free surface energy as a result of PIM-1 fluorination was revealed. The fluorination time was shown to affect the surface energy (ÎłSV), providing its shift from a low value (25 mJ∙m−2), corresponding to tetrafluoroethylene, up to a relatively high value, corresponding to a hydrophilic surface

    Structure, Physicochemical Properties and Biological Activity of Lipopolysaccharide from the Rhizospheric Bacterium <i>Ochrobactrum quorumnocens</i> T1Kr02, Containing <span style="font-variant: small-caps">d</span>-Fucose Residues

    No full text
    Lipopolysaccharides (LPSs) are major components of the outer membranes of Gram-negative bacteria. In this work, the structure of the O-polysaccharide of Ochrobactrum quorumnocens T1Kr02 was identified by nuclear magnetic resonance (NMR), and the physical–chemical properties and biological activity of LPS were also investigated. The NMR analysis showed that the O-polysaccharide has the following structure: →2)-ÎČ-d-Fucf-(1→3)-ÎČ-d-Fucp-(1→. The structure of the periplasmic glucan coextracted with LPS was established by NMR spectroscopy and chemical methods: →2)-ÎČ-d-Glcp-(1→. Non-stoichiometric modifications were identified in both polysaccharides: 50% of d-fucofuranose residues at position 3 were O-acetylated, and 15% of d-Glcp residues at position 6 were linked with succinate. This is the first report of a polysaccharide containing both d-fucopyranose and d-fucofuranose residues. The fatty acid analysis of the LPS showed the prevalence of 3-hydroxytetradecanoic, hexadecenoic, octadecenoic, lactobacillic, and 27-hydroxyoctacosanoic acids. The dynamic light scattering demonstrated that LPS (in an aqueous solution) formed supramolecular particles with a size of 72.2 nm and a zeta-potential of –21.5 mV. The LPS solution (10 mkg/mL) promoted the growth of potato microplants under in vitro conditions. Thus, LPS of O. quorumnocens T1Kr02 can be recommended as a promoter for plants and as a source of biotechnological production of d-fucose

    Proceedings of the 23rd Paediatric Rheumatology European Society Congress: part one

    No full text
    corecore