39 research outputs found

    Repetitive DNA in the Architecture, Repatterning, and Diversification of the Genome of Aegilops speltoides Tausch (Poaceae, Triticeae)

    Get PDF
    The genome’s adaptability to environmental changes, especially during rapid climatic fluctuations, underlies the existence and evolution of species. In the wild, genetic and epigenetic genomic changes are accompanied by significant alterations in the complex nuclear repetitive DNA fraction. Current intraspecific polymorphism of repetitive DNA is closely related to ongoing chromosomal rearrangements, which typically result from erroneous DNA repair and recombination. In this study, we addressed tandem repeat patterns and interaction/reshuffling both in pollen mother cell (PMC) development and somatogenesis in the wild diploid cereal Aegilops speltoides, with a focus on genome repatterning and stabilization. Individual contrasting genotypes were investigated using the fluorescent in situ hybridization (FISH) approach by applying correlative fluorescence and electron microscopy. Species-specific Spelt1 and tribe-specific Spelt52 tandem repeats were used as the markers for monitoring somatic and meiotic chromosomal interactions and dynamics in somatic interphase nuclei. We found that, the number of tandem repeat clusters in nuclei is usually lower than the number on chromosomes due to the associations of clusters of the same type in common blocks. In addition, tightly associated Spelt1–Spelt52 clusters were revealed in different genotypes. The frequencies of nonhomologous/ectopic associations between tandem repeat clusters were revealed in a genotype-/population-specific manner. An increase in the number of tandem repeat clusters in the genome causes an increase in the frequencies of their associations. The distal/terminal regions of homologous chromosomes are separated in nuclear space, and nonhomologous chromosomes are often involved in somatic recombination as seen by frequently formed interchromosomal chromatin bridges. In both microgametogenesis and somatogenesis, inter- and intrachromosomal associations are likely to lead to DNA breaks during chromosome disjunction in the anaphase stage. Uncondensed/improperly packed DNA fibers, mainly in heterochromatic regions, were revealed in both the meiotic and somatic prophases that might be a result of broken associations. Altogether, the data obtained showed that intraorganismal dynamics of repetitive DNA under the conditions of natural out-crossing and artificial intraspecific hybridization mirrors the structural plasticity of the Ae. speltoides genome, which is interlinked with genetic diversity through the species distribution area in contrasting ecogeographical environments in and around the Fertile Crescent

    Repetitive Behaviours in Patients with Gilles de la Tourette Syndrome: Tics, Compulsions, or Both?

    Get PDF
    Background Repetitive behaviours (RB) in patients with Gilles de la Tourette syndrome (GTS) are frequent. However, a controversy persists whether they are manifestations of obssessive-compulsive disorder (OCD) or correspond to complex tics. Methods 166 consecutive patients with GTS aged 15–68 years were recruited and submitted to extensive neurological, psychiatric and psychological evaluations. RB were evaluated by the YBOCS symptom checklist and Mini International Neuropsychiatric Interview (M.I.N.I), and classified on the basis of a semi-directive psychiatric interview as compulsions or tics. Results RB were present in 64.4% of patients with GTS (107/166) and categorised into 3 major groups: a ‘tic-like’ group (24.3%–40/166) characterised by RB such as touching, counting, ‘just right’ and symmetry searching; an ‘OCD-like’ group (20.5%–34/166) with washing and checking rituals; and a ‘mixed’ group (13.2%–22/166) with both ‘tics-like’ and ‘OCD-like’ types of RB present in the same patient. In 6.3% of patients, RB could not be classified into any of these groups and were thus considered ‘undetermined’. Conclusions The results confirm the phenomenological heterogeneity of RB in GTS patients and allows to distinguish two types: tic-like behaviours which are very likely an integral part of GTS; and OCD-like behaviours, which can be considered as a comorbid condition of GTS and were correlated with higher score of complex tics, neuroleptic and SSRIs treatment frequency and less successful socio-professional adaptation. We suggest that a meticulous semiological analysis of RB in GTS patients will help to tailor treatment and allow to better classify patients for future pathophysiologic studies. Trial Registration ClinicalTrials.gov NCT0016935

    Dietary L-arginine supplementation reduces Methotrexate-induced intestinal mucosal injury in rat

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arginine (ARG) and nitric oxide maintain the mucosal integrity of the intestine in various intestinal disorders. In the present study, we evaluated the effects of oral ARG supplementation on intestinal structural changes, enterocyte proliferation and apoptosis following methotrexate (MTX)-induced intestinal damage in a rat.</p> <p>Methods</p> <p>Male rats were divided into four experimental groups: Control rats, CONTR-ARG rats, were treated with oral ARG given in drinking water 72 hours before and 72 hours following vehicle injection, MTX rats were treated with a single dose of methotrexate, and MTX-ARG rats were treated with oral ARG following injection of MTX. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation and enterocyte apoptosis were determined 72 hours following MTX injection. RT-PCR was used to determine bax and bcl-2 mRNA expression.</p> <p>Results</p> <p>MTX-ARG rats demonstrated greater jejunal and ileal bowel weight, greater ileal mucosal weight, greater ileal mucosal DNA and protein levels, greater villus height in jejunum and ileum and crypt depth in ileum, compared to MTX animals. A significant decrease in enterocyte apoptosis in the ileum of MTX-ARG rats (vs MTX) was accompanied by decreased bax mRNA and protein expression and increased bcl-2 protein levels.</p> <p>Conclusions</p> <p>Treatment with oral ARG prevents mucosal injury and improves intestinal recovery following MTX- injury in the rat.</p

    The Mechanisms of the Anti-Inflammatory and Anti-Apoptotic Effects of Omega-3 Polyunsaturated Fatty Acids during Methotrexate-Induced Intestinal Damage in Cell Line and in a Rat Model

    No full text
    Background: The aim of this study was to examine the anti-inflammatory and anti-apoptotic patterns of omega-3 polyunsaturated fatty acids (n-3 PUFAs) during methotrexate (MTX) induced intestinal damage in cell culture and in a rat model. Methods: Non-treated and treated with MTX HT 29 and HCT116cells were exposed to increasing doses of n-3 PUFAs and cell viability was evaluated using PrestoBlue® assay. Male Sprague-Dawley rats were divided into 4 experimental groups: Control rats, CONTR+n-3 PUFA rats that were treated with oral n-3 PUFA, MTX rats were treated with MTX given IP, and MTX+n-3 PUFA rats were treated with oral n-3 PUFA before and following injection of MTX. Intestinal mucosal parameters and mucosal inflammation, enterocyte proliferation and apoptosis, TNF-α in mucosal tissue and plasma (ELISA), NF-κB, COX-2, TNF-α, Fas, FasL, Fadd, Bid, Bax and Bcl-2gene and protein levels were determined 72 h following MTX injection. Results: Exposure of HT 29 and HCT116cells to n-3 PUFA attenuated inhibiting effects of MTX on cell viability. MTX-n-3 PUFA rats demonstrated a lower intestinal injury score and enhanced intestinal repair. A significant decrease in enterocyte apoptosis in MTX+n-3 PUFA rats was accompanied by decreased TNF-α, FAS, FasL, FADD and BID mRNA levels. Decreased NF-κB, COX-2 and TNF-α levels in mucosa was accompanied by a decreased number of IELs and macrophages. Conclusions: n-3 PUFAs inhibit NF-κB/COX-2 induced production of pro-inflammatory cytokines and inhibit cell apoptosis mainly by extrinsic pathway in rats with MTX-induced intestinal damage

    Quercetin prevents small intestinal damage and enhances intestinal recovery during methotrexate-induced intestinal mucositis of rats

    No full text
    Background: Gastrointestinal mucositis occurs as a consequence of cytotoxic treatment. Quercetin (QCT) is a bioflavonoid that exerts significant antioxidant activity and anti-inflammatory as well as anti-malignancy properties. Objective: To evaluate the effects of oral QCT consumption in preventing intestinal mucosal damage and stimulating intestinal recovery following methotrexate (MTX)-induced intestinal damage in a rat model. Design: Male Sprague–Dawley rats were divided into four groups: Control Group A (CONTR) – rats were treated with 2 cc of saline given by gavage for 6 days. Group B (CONTR-QCT) – rats were treated with QCT (100 mg/kg in 2 ml saline) given by gavage 3 days before and 3 days after intraperitoneal (IP) injection of saline. Group C (MTX) – rats were injected a single dose (25 mg/kg) of MTX IP. Group D (MTX-QCT) rats were treated with QCT (similar to Group B) 3 days before and 3 days after IP MTX injection. Intestinal mucosal parameters (bowel and mucosal weight, mucosal DNA and protein content, and villus height and crypt depth), enterocytes proliferation, and enterocyte apoptosis degree were investigated at sacrifice on the 4th day after MTX or saline injection. Results: Administration of QCT to MTX-treated rats resulted in: (1) significant decrease in intestinal injury score, (2) significant increase in intestinal and mucosal weight in jejunum and ileum, (3) increase on the protein content of the ileum, (4) increase in the villus height in the ileum, (5) increase of crypt depth of jejunum and ileum, and (6) increase in cell proliferation in the jejunum and ileum compared to MTX-nontreated group. Conclusions: Administration of QCT prevents intestinal damage and improves intestinal recovery following MTX-induced intestinal damage in a rat. We surmise that the effect of QCT is based on induction of cell proliferation in the crypt rather than inhibition of apoptosis

    Dietary transforming growth factor-beta 2 (TGF-β2) supplementation reduces methotrexate-induced intestinal mucosal injury in a rat.

    Get PDF
    BACKGROUND/AIMS: Dietary supplementation with transforming growth factor-beta (TGF-β) has been proven to minimize intestinal damage and facilitate regeneration after mucosal injury. In the present study, we evaluated the effects of oral TGF-β2 supplementation on intestinal structural changes, enterocyte proliferation and apoptosis following methotrexate (MTX)-induced intestinal damage in a rat and in a cell culture model. METHODS: Caco-2 cells were treated with MTX and were incubated with increasing concentrations of TGF-β2. Cell apoptosis was assessed using FACS analysis by annexin staining and cell viability was monitored using Trypan Blue assay. Male rats were divided into four experimental groups: Control rats, CONTR- TGF-β rats were treated with diet enriched with TGF-β2, MTX rats were treated with a single dose of methotrexate, and MTX- TGF-β rats were treated with diet enriched with TGF-β2. Intestinal mucosal damage, mucosal structural changes, enterocyte proliferation and enterocyte apoptosis were determined at sacrifice. Real Time PCR and Western blot were used to determine bax and bcl-2 mRNA, p-ERK, β-catenin, IL-1B and bax protein expression. RESULTS: Treatment of MTX-pretreated Caco-2 cells with TGF-B2 resulted in increased cell viability and decreased cell apoptosis. Treatment of MTX-rats with TGF-β2 resulted in a significant increase in bowel and mucosal weight, DNA and protein content, villus-height (ileum), crypt-depth (jejunum), decreased intestinal-injury score, decreased level of apoptosis and increased cell proliferation in jejunum and ileum compared to the untreated MTX group. MTX-TGF-β2 rats demonstrated a lower bax mRNA and protein levels as well as increased bcl-2 mRNA levels in jejunum and ileum compared to MTX group. Treatment with TGF-β2 also led to increased pERK, IL-1B and β-catenin protein levels in intestinal mucosa. CONCLUSIONS: Treatment with TGF-β2 prevents mucosal-injury, enhances p-ERK and β-catenin induced enterocyte proliferation, inhibits enterocyte apoptosis and improves intestinal recovery following MTX-induced intestinal-mucositis in rats
    corecore