153 research outputs found

    Fairness-Aware Multi-Server Federated Learning Task Delegation over Wireless Networks

    Full text link
    In the rapidly advancing field of federated learning (FL), ensuring efficient FL task delegation while incentivising FL client participation poses significant challenges, especially in wireless networks where FL participants' coverage is limited. Existing Contract Theory-based methods are designed under the assumption that there is only one FL server in the system (i.e., the monopoly market assumption), which in unrealistic in practice. To address this limitation, we propose Fairness-Aware Multi-Server FL task delegation approach (FAMuS), a novel framework based on Contract Theory and Lyapunov optimization to jointly address these intricate issues facing wireless multi-server FL networks (WMSFLN). Within a given WMSFLN, a task requester products multiple FL tasks and delegate them to FL servers which coordinate the training processes. To ensure fair treatment of FL servers, FAMuS establishes virtual queues to track their previous access to FL tasks, updating them in relation to the resulting FL model performance. The objective is to minimize the time-averaged cost in a WMSFLN, while ensuring all queues remain stable. This is particularly challenging given the incomplete information regarding FL clients' participation cost and the unpredictable nature of the WMSFLN state, which depends on the locations of the mobile clients. Extensive experiments comparing FAMuS against five state-of-the-art approaches based on two real-world datasets demonstrate that it achieves 6.91% higher test accuracy, 27.34% lower cost, and 0.63% higher fairness on average than the best-performing baseline

    The Prospect of Enhancing Large-Scale Heterogeneous Federated Learning with Transformers

    Full text link
    Federated learning (FL) addresses data privacy concerns by enabling collaborative training of AI models across distributed data owners. Wide adoption of FL faces the fundamental challenges of data heterogeneity and the large scale of data owners involved. In this paper, we investigate the prospect of Transformer-based FL models for achieving generalization and personalization in this setting. We conduct extensive comparative experiments involving FL with Transformers, ResNet, and personalized ResNet-based FL approaches under various scenarios. These experiments consider varying numbers of data owners to demonstrate Transformers' advantages over deep neural networks in large-scale heterogeneous FL tasks. In addition, we analyze the superior performance of Transformers by comparing the Centered Kernel Alignment (CKA) representation similarity across different layers and FL models to gain insight into the reasons behind their promising capabilities

    Multi-Resource Allocation for On-Device Distributed Federated Learning Systems

    Full text link
    This work poses a distributed multi-resource allocation scheme for minimizing the weighted sum of latency and energy consumption in the on-device distributed federated learning (FL) system. Each mobile device in the system engages the model training process within the specified area and allocates its computation and communication resources for deriving and uploading parameters, respectively, to minimize the objective of system subject to the computation/communication budget and a target latency requirement. In particular, mobile devices are connect via wireless TCP/IP architectures. Exploiting the optimization problem structure, the problem can be decomposed to two convex sub-problems. Drawing on the Lagrangian dual and harmony search techniques, we characterize the global optimal solution by the closed-form solutions to all sub-problems, which give qualitative insights to multi-resource tradeoff. Numerical simulations are used to validate the analysis and assess the performance of the proposed algorithm

    We know what you want to buy:a demographic-based system for product recommendation on microblogs

    Get PDF
    Product recommender systems are often deployed by e-commerce websites to improve user experience and increase sales. However, recommendation is limited by the product information hosted in those e-commerce sites and is only triggered when users are performing e-commerce activities. In this paper, we develop a novel product recommender system called METIS, a MErchanT Intelligence recommender System, which detects users' purchase intents from their microblogs in near real-time and makes product recommendation based on matching the users' demographic information extracted from their public profiles with product demographics learned from microblogs and online reviews. METIS distinguishes itself from traditional product recommender systems in the following aspects: 1) METIS was developed based on a microblogging service platform. As such, it is not limited by the information available in any specific e-commerce website. In addition, METIS is able to track users' purchase intents in near real-time and make recommendations accordingly. 2) In METIS, product recommendation is framed as a learning to rank problem. Users' characteristics extracted from their public profiles in microblogs and products' demographics learned from both online product reviews and microblogs are fed into learning to rank algorithms for product recommendation. We have evaluated our system in a large dataset crawled from Sina Weibo. The experimental results have verified the feasibility and effectiveness of our system. We have also made a demo version of our system publicly available and have implemented a live system which allows registered users to receive recommendations in real time

    Generative AI-enabled Quantum Computing Networks and Intelligent Resource Allocation

    Full text link
    Quantum computing networks enable scalable collaboration and secure information exchange among multiple classical and quantum computing nodes while executing large-scale generative AI computation tasks and advanced quantum algorithms. Quantum computing networks overcome limitations such as the number of qubits and coherence time of entangled pairs and offer advantages for generative AI infrastructure, including enhanced noise reduction through distributed processing and improved scalability by connecting multiple quantum devices. However, efficient resource allocation in quantum computing networks is a critical challenge due to factors including qubit variability and network complexity. In this article, we propose an intelligent resource allocation framework for quantum computing networks to improve network scalability with minimized resource costs. To achieve scalability in quantum computing networks, we formulate the resource allocation problem as stochastic programming, accounting for the uncertain fidelities of qubits and entangled pairs. Furthermore, we introduce state-of-the-art reinforcement learning (RL) algorithms, from generative learning to quantum machine learning for optimal quantum resource allocation to resolve the proposed stochastic resource allocation problem efficiently. Finally, we optimize the resource allocation in heterogeneous quantum computing networks supporting quantum generative learning applications and propose a multi-agent RL-based algorithm to learn the optimal resource allocation policies without prior knowledge

    Rapid Discovery of the Potential Toxic Compounds in Polygonum multiflorum by UHPLC/Q-Orbitrap-MS-Based Metabolomics and Correlation Analysis

    Get PDF
    The dry roots of Polygonum multiflorum (PM), involving both the raw and processed materials, are widely used as the traditional Chinese medicine for treating various diseases in China. Hepatotoxicity has been occasionally reported in patients who consume PM. Unfortunately, no definite criteria are currently available regarding the processing technology of PM for reduction the toxicity. In this work, we aimed to investigate the variations of PM metabolite profiles induced by different processing technologies by UHPLC/Q-Orbitrap-MS and multivariate statistical analysis, and to discover the potential toxic compounds by correlating the cytotoxicity of L02 cell with the contents of metabolites in raw and processed PM samples. We could identify two potential toxic compounds, emodin-8-O-glucoside and torachrysone-O-hexose, which could be selected as the toxic markers to evaluate different processing methods. The results indicated all processed PM samples could decrease the cytotoxicity on L02 cell. The best processing technology for PM process was to steam PM in black soybean decoction (BD-PM) for 24 h

    Kaposi’s Sarcoma Associated Herpesvirus Encoded Viral FLICE Inhibitory Protein K13 Activates NF-κB Pathway Independent of TRAF6, TAK1 and LUBAC

    Get PDF
    BACKGROUND: Kaposi's sarcoma associated herpesvirus encoded viral FLICE inhibitory protein (vFLIP) K13 activates the NF-κB pathway by binding to the NEMO/IKKγ subunit of the IκB kinase (IKK) complex. However, it has remained enigmatic how K13-NEMO interaction results in the activation of the IKK complex. Recent studies have implicated TRAF6, TAK1 and linear ubiquitin chains assembled by a linear ubiquitin chain assembly complex (LUBAC) consisting of HOIL-1, HOIP and SHARPIN in IKK activation by proinflammatory cytokines. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrate that K13-induced NF-κB DNA binding and transcriptional activities are not impaired in cells derived from mice with targeted disruption of TRAF6, TAK1 and HOIL-1 genes and in cells derived from mice with chronic proliferative dermatitis (cpdm), which have mutation in the Sharpin gene (Sharpin(cpdm/cpdm)). Furthermore, reconstitution of NEMO-deficient murine embryonic fibroblast cells with NEMO mutants that are incapable of binding to linear ubiquitin chains supported K13-induced NF-κB activity. K13-induced NF-κB activity was not blocked by CYLD, a deubiquitylating enzyme that can cleave linear and Lys63-linked ubiquitin chains. On the other hand, NEMO was required for interaction of K13 with IKK1/IKKα and IKK2/IKKβ, which resulted in their activation by "T Loop" phosphorylation. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that K13 activates the NF-κB pathway by binding to NEMO which results in the recruitment of IKK1/IKKα and IKK2/IKKβ and their subsequent activation by phosphorylation. Thus, K13 activates NF-κB via a mechanism distinct from that utilized by inflammatory cytokines. These results have important implications for the development of therapeutic agents targeting K13-induced NF-κB for the treatment of KSHV-associated malignancies

    Vibration Suppression of a 3-DOF Parallel Manipulator Based on Hybrid Negative Impulses Multi-mode Input Shaping

    Get PDF
    Abstract. The classic multi-mode negative impulses input shapers can suppress the residual vibration of the multi-mode system effectively. But when these several frequencies bandwidths and amplitudes of vibration modes are greatly different, the time delay and the suppression performances of input shapers are decreased. However, the hybrid multi-mode negative impulses input shapers can overcome the disadvantage. The hybrid double-mode negative impulses input shapers of a 3-DOF parallel manipulator and are constructed and compared with the classic multi-mode negative impulses input shapers. And the numerical simulations are shown out, for different frequencies bandwidths and amplitudes of vibration, and the hybrid multi-mode negative impulses input shapers can increase the total suppression performance of input shaper

    Intermittent theta burst stimulation vs. high-frequency repetitive transcranial magnetic stimulation for post-stroke cognitive impairment: Protocol of a pilot randomized controlled double-blind trial

    Get PDF
    IntroductionIntermittent theta burst stimulation (iTBS), a novel mode of transcranial magnetic stimulation (TMS), has curative effects on patients with post-stroke cognitive impairment (PSCI). However, whether iTBS will be more applicable in clinical use than conventional high-frequency repetitive transcranial magnetic stimulation (rTMS) is unknown. Our study aims to compare the difference in effect between iTBS and rTMS in treating PSCI based on a randomized controlled trial, as well as to determine its safety and tolerability, and to further explore the underlying neural mechanism.MethodsThe study protocol is designed as a single-center, double-blind, randomized controlled trial. Forty patients with PSCI will be randomly assigned to two different TMS groups, one with iTBS and the other with 5 Hz rTMS. Neuropsychological evaluation, activities of daily living, and resting electroencephalography will be conducted before treatment, immediately post-treatment, and 1 month after iTBS/rTMS stimulation. The primary outcome is the change in the Montreal Cognitive Assessment Beijing Version (MoCA-BJ) score from baseline to the end of the intervention (D11). The secondary outcomes comprise changes in resting electroencephalogram (EEG) indexes from baseline to the end of the intervention (D11) as well as the Auditory Verbal Learning Test, the symbol digit modality test, the Digital Span Test findings, and the MoCA-BJ scores from baseline to endpoint (W6).DiscussionIn this study, the effects of iTBS and rTMS will be evaluated using cognitive function scales in patients with PSCI as well as data from resting EEG, which allows for an in-depth exploration of underlying neural oscillations. In the future, these results may contribute to the application of iTBS for cognitive rehabilitation of patients with PSCI

    Frisson Waves: Exploring Automatic Detection, Triggering and Sharing of Aesthetic Chills in Music Performances

    Get PDF
    Frisson is the feeling and experience of physical reactions such as shivers, tingling skin, and goosebumps. Using entrainment through facilitating interpersonal transmissions of embodied sensations, we present "Frisson Waves" with the aim to enhance live music performance experiences. "Frisson Waves" is an exploratory real-time system to detect, trigger and share frisson in a wave-like pattern over audience members during music performances. The system consists of a physiological sensing wristband for detecting frisson and a thermo-haptic neckband for inducing frisson. In a controlled environment, we evaluate detection (n=19) and triggering of frisson (n=15). Based on our findings, we conducted an in-the-wild music concert with 48 audience members using our system to share frisson. This paper summarizes a framework for accessing, triggering and sharing frisson. We report our research insights, lessons learned, and limitations of "Frisson Waves". Yan He, George Chernyshov, Jiawen Han, Dingding Zheng, Ragnar Thomsen, Danny Hynds, Muyu Liu, Yuehui Yang, Yulan Ju, Yun Suen Pai, Kouta Minamizawa, Kai Kunze, and Jamie A War
    • …
    corecore