94 research outputs found

    Striatal Cdk5-pTyr15

    Get PDF
    Striatal functions depend on the activity balance between the dopamine and glutamate neurotransmissions. Glutamate inputs activate cyclin-dependent kinase 5 (Cdk5), which inhibits postsynaptic dopamine signaling by phosphorylating DARPP-32 (dopamine- and cAMP-regulated phosphoprotein, 32 kDa) at Thr75 in the striatum. c-Abelson tyrosine kinase (c-Abl) is known to phosphorylate Cdk5 at Tyr15 (Tyr15-Cdk5) and thereby facilitates the Cdk5 activity. We here report that Cdk5 with Tyr15 phosphorylation (Cdk5-pTyr15) is enriched in the mouse striatum, where dopaminergic stimulation inhibited phosphorylation of Tyr15-Cdk5 by acting through the D2 class dopamine receptors. Moreover, in the 1-methyl-4-phenyl-1,2,4,6-tetrahydropyridine (MPTP) mouse model, dopamine deficiency caused increased phosphorylation of both Tyr15-Cdk5 and Thr75-DARPP-32 in the striatum, which could be attenuated by administration of L-3,4-dihydroxyphenylalanine and imatinib (STI-571), a selective c-Abl inhibitor. Our results suggest a functional link of Cdk5-pTyr15 with postsynaptic dopamine and glutamate signals through the c-Abl kinase activity in the striatum

    Surgical repair for aortic dissection accompanying a right-sided aortic arch

    Get PDF
    Aortic anomaly in which a right-sided aortic arch associated with Kommerell's diverticulum and aberrant left subclavian artery is rare. The present report describes a patient with type-B aortic dissection accompanying aortic anomalies consisting of right-sided aortic arch and the left common carotid and left subclavian artery arising from Kommerell's diverticulum. As dissecting aortic aneurysm diameter increased rapidly, Single-stage surgical repair of extensive thoracic aorta was performed through median sternotomy and right posterolateral fifth intercostal thoracotomy, yielding favorable results. Our surgical procedures are discussed

    Long-term result of hybrid procedure for an extensive thoracic aortic aneurysm in Takayasu arteritis: a case report

    Get PDF
    We herein present a 60 years old woman with Takayasu arteritis and an extensive thoracic aortic aneurysm who initially underwent a total aortic arch replacement. Then, in the second stage, thoracic endovascular aortic repair was performed using the elephant trunk graft as the proximal landing zone at four weeks after aortic arch repair. The postoperative course was relatively uncomplicated, but a type II endoleak was noted. Currently, about 5 years postoperatively, the slight type II endoleak from intercostal artery persists, but aneurism dilatation has not been noted, so the patient is being followed up

    Genome-Scale CRISPR/Cas9 Screening Reveals Squalene Epoxidase as a Susceptibility Factor for Cytotoxicity of Malformin A1

    Get PDF
    Malformin A1 (MA1) is a fungus-produced cyclic pentapeptide. MA1 exhibits teratogenicity to plants, fibrinolysis-enhancing activity, and cytotoxicity to mammalian cells. To clarify the cytotoxic mechanism of MA1, we screened for the genes involved in the cytotoxicity of MA1 in monocytoid U937 cells by using a CRISPR/Cas9-based genome-wide knockout library. Screening was performed by positive selection for cells that were resistant to MA1 treatment, and single guide RNAs (sgRNAs) integrated into MA1-resistant cells were analyzed by high-throughput sequencing. As a result of the evaluation of sgRNAs that were enriched in MA1-resistant cells, SQLE, which encodes squalene epoxidase, was identified as a candidate gene. SQLE-depleted U937 cells were viable in the presence of MA1, and squalene epoxidase inhibitor conferred MA1 resistance to wild-type cells. These results indicate that squalene epoxidase is implicated in the cytotoxicity of MA1. This finding represents a new insight into applications of MA1 for treating ischemic diseases

    Cadmium-coordinated supramolecule suppresses tumor growth of T-cell leukemia in mice

    Get PDF
    Cadmium is a toxic pollutant with occupational and environmental significance, due to its diverse toxic effects. Supramolecules that conjugate and decontaminate toxic metals have potential for use in treatment of cadmium intoxication. In addition, metal-coordinating ability has been postulated to contribute to the cytotoxic effects of anti-tumor agents such as cisplatin or bleomycin. Thiacalixarenes, cyclic oligomers of p-alkylphenol bridged by sulfur atoms, are supramolecules known to have potent coordinating ability to metal ions. In this study, we show that cadmium-coordinated thiacalix[4]arene tetrasulfate (TC4ATS-Cd) exhibits an anti-proliferative effect against T-cell leukemia cells. Cadmium exhibited cytotoxicity with IC50 values ranging from 36 to 129M against epithelia-derived cancer cell lines, while TC4ATS-Cd elicited no significant cytotoxicity (IC50>947M). However, a number of T-cell leukemia cell lines exhibited marked sensitivity to TC4ATS-Cd. In Jurkat cells, toxicity of TC4ATS-Cd occurred with an IC50 of 6.9M, which is comparable to that of 6.5M observed for cadmium alone. TC4ATS-Cd induced apoptotic cell death through activation of caspase-3 in Jurkat cells. In a xenograft model, TC4ATS-Cd (13mg/kg) treatment significantly suppressed the tumor growth of Jurkat cells in mice. In addition, TC4ATS-Cd-treated mice exhibited significantly less cadmium accumulation in liver and kidney compared to equimolar cadmium-treated mice. These results suggest that cadmium-coordinated supramolecules may have therapeutic potential for treatment of T-cell leukemia

    Involvement of RSK1 activation in malformin-enhanced cellular fibrinolytic activity

    Get PDF
    Pharmacological interventions to enhance fibrinolysis are effective for treating thrombotic disorders. Utilizing the in vitro U937 cell line-based fibrin degradation assay, we had previously found a cyclic pentapeptide malformin A(1) (MA(1)) as a novel activating compound for cellular fibrinolytic activity. The mechanism by which MA(1) enhances cellular fibrinolytic activity remains unknown. In the present study, we show that RSK1 is a crucial mediator of MA(1)-induced cellular fibrinolysis. Treatment with rhodamine-conjugated MA1 showed that MA(1) localizes mainly in the cytoplasm of U937 cells. Screening with an antibody macroarray revealed that MA(1) induces the phosphorylation of RSK1 at Ser380 in U937 cells. SL0101, an inhibitor of RSK, inhibited MA(1)-induced fibrinolytic activity, and CRISPR/Cas9-mediated knockout of RSK1 but not RSK2 suppressed MA1-enhanced fibrinolysis in U937 cells. Synthetic active MA(1) derivatives also induced the phosphorylation of RSK1. Furthermore, MA(1) treatment stimulated phosphorylation of ERK1/2 and MEK1/2. PD98059, an inhibitor of MEK1/2, inhibited MA(1)-induced phosphorylation of RSK1 and ERK1/2, indicating that MA1 induces the activation of the MEK-ERK-RSK pathway. Moreover, MA(1) upregulated the expression of urokinase-type plasminogen activator (uPA) and increased uPA secretion. These inductions were abrogated in RSK1 knockout cells. These results indicate that RSK1 is a key regulator of MA(1)-induced extracellular fibrinolytic activity
    corecore