247 research outputs found

    Josephson Effect due to Odd-Frequency Pairs in Diffusive Half Metals

    Get PDF
    Motivated by a recent experiment [Keizer et al., Nature (London) 439, 825 (2006)], we study the Josephson effect in superconductor/diffusive half metal/superconductor junctions using the recursive Green function method. The spin-flip scattering at the junction interfaces opens the Josephson channel of the odd-frequency spin-triplet Cooper pairs. As a consequence, the local density of states in a half metal has a large peak at the Fermi energy. Therefore the odd-frequency pairs can be detected experimentally by using the scanning tunneling spectroscopy

    Quasiparticle Dissipation in d-wave Superconductor Phase Qubit

    Get PDF
    Recent phase sensitive experiments on high Tc superconductors, e.g., YBa_2Cu_3O_7 single crystals, have established the d-wave nature of the cuprate materials. Here we discuss how to make use of d-wave Josephson junctions in the construction of a phase qubit. We especially focus on the effect of quasiparticle dissipation on the macroscopic quantum tunneling which corresponds to the measurement process for the d-wave phase qubit.Comment: 3 pages, 1 figure, The Seventh International Conference on Quantum Communication, Measurement and Computing, Glasgow, UK, from 25th to 29th July 2004. To appear in the AIP Conference Proceeding

    Electron transport in a ferromagnet-superconductor junction on graphene

    Get PDF
    In a usual ferromagnet connected with a superconductor, the exchange potential suppresses the superconducting pairing correlation. We show that this common knowledge does not hold in a ferromagnetsuperconductor junction on a graphene. When the chemical potential of a graphene is close to the conical point of energy dispersion, the exchange potential rather assists the charge transport through a junction interface. The loose-bottomed electric structure causes this unusual effec

    Quantization of Conductance Minimum and Index Theorem

    Get PDF
    We discuss the minimum value of the zero-bias differential conductance GminG_{\textrm{min}} in a junction consisting of a normal metal and a nodal superconductor preserving time-reversal symmetry. Using the quasiclassical Green function method, we show that GminG_{\textrm{min}} is quantized at (4e2/h)NZES (4e^2/h) N_{\mathrm{ZES}} in the limit of strong impurity scatterings in the normal metal. The integer NZESN_{\mathrm{ZES}} represents the number of perfect transmission channels through the junction. An analysis of the chiral symmetry of the Hamiltonian indicates that NZESN_{\mathrm{ZES}} corresponds to the Atiyah-Singer index in mathematics.Comment: 5 pages, 1 figur

    Effects of the phase coherence on the local density of states in superconducting proximity structures

    Get PDF
    We theoretically study the local density of states in superconducting proximity structure where two superconducting terminals are attached to a side surface of a normal-metal wire. Using the quasiclassical Green's function method, the energy spectrum is obtained for both of spin-singlet ss-wave and spin-triplet pp-wave junctions. In both of the cases, the decay length of the proximity effect at the zero temperature is limited by a depairing effect due to inelastic scatterings. In addition to the depairing effect, in pp-wave junctions, the decay length depends sensitively on the transparency at the junction interfaces, which is a unique property to odd-parity superconductors where the anomalous proximity effect occurs.Comment: 11 pages, 9 figure

    Conductance Spectroscopy of Spin-triplet Superconductors

    Get PDF
    We propose a novel experiment to identify the symmetry of superconductivity on the basis of theoretical results for differential conductance of a normal metal connected to a superconductor. The proximity effect from the superconductor modifies the conductance of the remote current depending remarkably on the pairing symmetry: spin-singlet or spin-triplet. The clear-cut difference in the conductance is explained by symmetry of Cooper pairs in a normal metal with respect to frequency. In the spin-triplet case, the anomalous transport is realized due to an odd-frequency symmetry of Cooper pairs.Comment: 4pages, 3 figures embedde
    corecore