41 research outputs found

    Multidrug Sensitive Yeast Strains, Useful Tools for Chemical Genetics

    Get PDF
    The budding yeast Saccharomyces cerevisiae is a useful eukaryote model organism for application to chemical biology studies, for example, drug screening, drug evaluation, and target identification. To use yeast for chemical biology research, however, it has been necessary to construct yeast strains suitable for various compounds because of their high drug resistance. Hence, the deletion of all multidrug resistance genes except for those that are important for viability and for genetic experiments/manipulation could increase the drug sensitivity without influencing the transformation, mating, or sporulation efficiency. There are two major factors conferring multidrug resistance in S. cerevisiae: one is the drug efflux system and the other is the permeability barrier. We therefore constructed a strain which shows high sensitivity to multiple drugs by disrupting the drug efflux system using ATP-binding cassette transporters and suppressing the membrane barrier system by introducing an ERG6-inducible system. In this review, we discuss the construction of our multidrug-sensitive yeast strains and their application in chemical biology

    Comparative genomics reveals insight into the phylogeny and habitat adaptation of novel Amycolatopsis species, an endophytic actinomycete associated with scab lesions on potato tubers

    Get PDF
    A novel endophytic actinomycete, strain MEP2-6T, was isolated from scab tissues of potato tubers collected from Mae Fag Mai Sub-district, San Sai District, Chiang Mai Province, Thailand. Strain MEP2-6T is a gram-positive filamentous bacteria characterized by meso-diaminopimelic acid in cell wall peptidoglycan and arabinose, galactose, glucose, and ribose in whole-cell hydrolysates. Diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and hydroxy-phosphatidylethanolamine were the major phospholipids, of which MK-9(H6) was the predominant menaquinone, whereas iso-C16:0 and iso-C15:0 were the major cellular fatty acids. The genome of the strain was 10,277,369 bp in size with a G + C content of 71.7%. The 16S rRNA gene phylogenetic and core phylogenomic analyses revealed that strain MEP2-6T was closely related to Amycolatopsis lexingtonensis NRRL B-24131T (99.4%), A. pretoriensis DSM 44654T (99.3%), and A. eburnea GLM-1T (98.9%). Notably, strain MEP2-6T displayed 91.7%, 91.8%, and 87% ANIb and 49%, 48.8%, and 35.4% dDDH to A. lexingtonensis DSM 44653T (=NRRL B-24131T), A. eburnea GLM-1T, and A. pretoriensis DSM 44654T, respectively. Based on phenotypic, chemotaxonomic, and genomic data, strain MEP2-6T could be officially assigned to a novel species within the genus Amycolatopsis, for which the name Amycolatopsis solani sp. nov. has been proposed. The type of strain is MEP2-6T (=JCM 36309T = TBRC 17632T = NBRC 116395T). Amycolatopsis solani MEP2-6T was strongly proven to be a non-phytopathogen of potato scab disease because stunting of seedlings and necrotic lesions on potato tuber slices were not observed, and there were no core biosynthetic genes associated with the BGCs of phytotoxin-inducing scab lesions. Furthermore, comparative genomics can provide a better understanding of the genetic mechanisms that enable A. solani MEP2-6T to adapt to the plant endosphere. Importantly, the strain smBGCs accommodated 33 smBGCs encoded for several bioactive compounds, which could be beneficially applied in the fields of agriculture and medicine. Consequently, strain MEP2-6T is a promising candidate as a novel biocontrol agent and antibiotic producer

    STK295900, a Dual Inhibitor of Topoisomerase 1 and 2, Induces G<inf>2</inf> Arrest in the Absence of DNA Damage

    Get PDF
    STK295900, a small synthetic molecule belonging to a class of symmetric bibenzimidazoles, exhibits antiproliferative activity against various human cancer cell lines from different origins. Examining the effect of STK295900 in HeLa cells indicates that it induces G2 phase arrest without invoking DNA damage. Further analysis shows that STK295900 inhibits DNA relaxation that is mediated by topoisomerase 1 (Top 1) and topoisomerase 2 (Top 2) in vitro. In addition, STK295900 also exhibits protective effect against DNA damage induced by camptothecin. However, STK295900 does not affect etoposide-induced DNA damage. Moreover, STK295900 preferentially exerts cytotoxic effect on cancer cell lines while camptothecin, etoposide, and Hoechst 33342 affected both cancer and normal cells. Therefore, STK295900 has a potential to be developed as an anticancer chemotherapeutic agent. © 2013 Kim et al

    Investigation of molecular biomarker candidates for diagnosis and prognosis of chronic periodontitis by bioinformatics analysis of pooled microarray gene expression datasets in Gene Expression Omnibus (GEO)

    No full text
    Abstract Background Chronic periodontitis (CP) is a multifactorial inflammatory disease. For the diagnosis of CP, it is necessary to investigate molecular biomarkers and the biological pathway of CP. Although analysis of mRNA expression profiling with microarray is useful to elucidate pathological mechanisms of multifactorial diseases, it is expensive. Therefore, we utilized pooled microarray gene expression data on the basis of data sharing to reduce hybridization costs and compensate for insufficient mRNA sampling. The aim of the present study was to identify molecular biomarker candidates and biological pathways of CP using pooled datasets in the Gene Expression Omnibus (GEO) database. Methods Three pooled transcriptomic datasets (GSE10334, GSE16134, and GSE23586) of gingival tissue with CP in the GEO database were analyzed for differentially expressed genes (DEGs) using GEO2R, functional analysis and biological pathways with the Database of Annotation Visualization and Integrated Discovery database, Protein-Protein Interaction (PPI) network and hub gene with the Search Tool for the Retrieval of Interaction Genes database, and biomarker candidates for diagnosis and prognosis and upstream regulators of dominant biomarker candidates with the Ingenuity Pathway Analysis database. Results We shared pooled microarray datasets in the GEO database. One hundred and twenty-three common DEGs were found in gingival tissue with CP, including 81 upregulated genes and 42 downregulated genes. Upregulated genes in Gene Ontology were significantly enriched in immune responses, and those in the Kyoto Encyclopedia of Genes and Genomes pathway were significantly enriched in the cytokine-cytokine receptor interaction pathway, cell adhesion molecules, and hematopoietic cell lineage. From the PPI network, the 12 nodes with the highest degree were screened as hub genes. Additionally, six biomarker candidates for CP diagnosis and prognosis were screened. Conclusions We identified several potential biomarkers for CP diagnosis and prognosis (e.g., CSF3, CXCL12, IL1B, MS4A1, PECAM1, and TAGLN) and upstream regulators of biomarker candidates for CP diagnosis (TNF and TGF2). We also confirmed key genes of CP pathogenesis such as CD19, IL8, CD79A, FCGR3B, SELL, CSF3, IL1B, FCGR2B, CXCL12, C3, CD53, and IL10RA. To our knowledge, this is the first report to reveal associations of CD53, CD79A, MS4A1, PECAM1, and TAGLN with CP

    Novel Natural Products Open the Door of Chemical Biology and Medicinal Chemistry

    No full text

    Natural tetramic acids elicit multiple inhibitory actions against mitochondrial machineries presiding over oxidative phosphorylation

    No full text
    The mitochondrial machineries presiding over ATP synthesis via oxidative phosphorylation are promising druggable targets. Fusaramin, a 3-acyl tetramic acid isolated from Fusarium concentricum FKI-7550, is an inhibitor of oxidative phosphorylation in Saccharomyces cerevisiae mitochondria, although its target has yet to be identified. Fusaramin significantly interfered with [³H]ADP uptake by yeast mitochondria at the concentration range inhibiting oxidative phosphorylation. A photoreactive fusaramin derivative (pFS-5) specifically labeled voltage-dependent anion channel 1 (VDAC1), which facilitates trafficking of ADP/ATP across the outer mitochondrial membrane. These results strongly suggest that the inhibition of oxidative phosphorylation by fusaramin is predominantly attributable to the impairment of VDAC1 functions. Fusaramin also inhibited F₀F₁ATP synthase and ubiquinol-cytochrome c oxidoreductase (complex III) at concentrations higher than those required for the VDAC inhibition. Considering that other tetramic acid derivatives are reported to inhibit F₀F₁ATP synthase and complex III, natural tetramic acids were found to elicit multiple inhibitory actions against mitochondrial machineries

    Marcanine G, a new cytotoxic 1-azaanthraquinone from the stem bark of <i>Goniothalamus marcanii</i> Craib

    No full text
    <p>The ethanolic extract from the stem bark of <i>Goniothalamus marcanii</i> Craib was shown in preliminary brine shrimp lethality data having good cytotoxic activity. Further bioassay guided isolation was done by means of solvent partition, chromatography and precipitation to provide four isolated compounds: a novel compound <b>1</b> with the core structure of 1-azaanthraquinone moiety referred as marcanine G; as well as compounds <b>2–4</b> with known aristolactam structures namely, piperolactam C, cepharanone B and taliscanine. These compounds were characterised by spectroscopic techniques. The assessment of cytotoxicity was established on an SRB assay using doxorubicin as a positive control. Marcanine G (<b>1</b>) was considered the most active compound indicating the IC<sub>50</sub> values of 14.87 and 15.18 μM against human lung cancer cells (A549) and human breast cancer cells (MCF7), respectively. However, <b>2</b> showed mild activity with the IC<sub>50</sub> values of 83.72 and 82.32 μM against A549 and MCF7 cells, respectively.</p
    corecore