2,556 research outputs found

    Global dynamics of cell mediated immunity in viral infection models with distributed delays

    Get PDF
    In this paper, we investigate global dynamics for a system of delay differential equations which describes a virus-immune interaction in \textit{vivo}. The model has two distributed time delays describing time needed for infection of cell and virus replication. Our model admits three possible equilibria, an uninfected equilibrium and infected equilibrium with or without immune response depending on the basic reproduction number for viral infection R0R_{0} and for CTL response R1R_{1} such that R1<R0R_{1}<R_{0}. It is shown that there always exists one equilibrium which is globally asymptotically stable by employing the method of Lyapunov functional. More specifically, the uninfected equilibrium is globally asymptotically stable if R01R_{0}\leq1, an infected equilibrium without immune response is globally asymptotically stable if R11<R0R_{1}\leq1<R_{0} and an infected equilibrium with immune response is globally asymptotically stable if R1>1R_{1}>1. The immune activation has a positive role in the reduction of the infection cells and the increasing of the uninfected cells if R1>1R_{1}>1.Comment: 16 pages, accepted by Journal of Mathematical Analysis and Application

    Global stability of an SIS epidemic model with a finite infectious period

    Get PDF
    Assuming a general distribution for the sojourn time in the in- fectious class, we consider an SIS type epidemic model formulated as a scalar integral equation. We prove that the endemic equilibrium of the model is globally asymptotically stable whenever it exists, solving the conjecture of Hethcote and van den Driessche (1995) for the case of nonfatal diseases

    A coalition formation value for games with externalities

    Get PDF
    The coalition formation problem in an economy with externalities can be adequately modeled by using games in partition function form (PFF games), proposed by Thrall and Lucas. If we suppose that forming the grand coalition generates the largest total surplus, a central question is how to allocate the worth of the grand coalition to each player, i.e., how to find an adequate solution concept, taking into account the whole process of coalition formation. We propose in this paper the original concepts of scenario-value, process-value and coalition formation value, which represent the average contribution of players in a scenario (a particular sequence of coalitions within a given coalition formation process), in a process (a sequence of partitions of the society), and in the whole (all processes being taken into account), respectively. We give an application to Cournot oligopoly, and two axiomatizations of the scenario-value.Coalition formation, games in partition function form, solution concept, Cournot oligopoly.
    corecore