94 research outputs found

    Isotropic orbital magnetic moments in magnetically anisotropic SrRuO3 films

    Full text link
    Epitaxially strained SrRuO3 films have been a model system for understanding the magnetic anisotropy in metallic oxides. In this paper, we investigate the anisotropy of the Ru 4d and O 2p electronic structure and magnetic properties using high-quality epitaxially strained (compressive and tensile) SrRuO3 films grown by machine-learning-assisted molecular beam epitaxy. The element-specific magnetic properties and the hybridization between the Ru 4d and O 2p orbitals were characterized by Ru M2,3-edge and O K-edge soft X-ray absorption spectroscopy and X-ray magnetic circular dichroism measurements. The magnetization curves for the Ru 4d and O 2p magnetic moments are identical, irrespective of the strain type, indicating the strong magnetic coupling between the Ru and O ions. The electronic structure and the orbital magnetic moment relative to the spin magnetic moment are isotropic despite the perpendicular and in-plane magnetic anisotropy in the compressive-strained and tensile-strained SrRuO3 films; i.e., the orbital magnetic moments have a negligibly small contribution to the magnetic anisotropy. This result contradicts Bruno model, where magnetic anisotropy arises from the difference in the orbital magnetic moment between the perpendicular and in-plane directions. Contributions of strain-induced electric quadrupole moments to the magnetic anisotropy are discussed, too

    Evaluation of Precision-Cast TiNi Shape Memory Alloy Brain Spatula

    Get PDF
    In order to develop a brain spatula made of a shape memory alloy (SMA), this paper discusses the bending characteristics of a new brain spatula precision-cast in a TiNi SMA. Based on the yield stress and the modulus of elasticity of the copper and the TiNi SMAs, the bending deformation properties of the SMA-brain spatula were estimated by assuming the condition to use the brain spatula as the bending of the strip cantilever. With respect to the SMA-brain spatula for the same length and width as the existing copper one, if the thickness of the conventional rolled-SMA spatula is 1.3 times as large as that of the existing copper-brain spatula,the SMA spatula can hold the same bending rigidity and can be bent by a smaller force than the existing copper one. If the thickness of the new cast-SMA spatula is 1. 2 times as large as that of the existing-copper spatula, the SMA spatula can hold the same bending rigidity and can be bent by the same force as the existing copper one
    corecore