11 research outputs found

    Downregulation of Mitochondrial Fusion Protein Expression Affords Protection from Canonical Necroptosis in H9c2 Cardiomyoblasts

    No full text
    Necroptosis, a form of necrosis, and alterations in mitochondrial dynamics, a coordinated process of mitochondrial fission and fusion, have been implicated in the pathogenesis of cardiovascular diseases. This study aimed to determine the role of mitochondrial morphology in canonical necroptosis induced by a combination of TNFα and zVAD (TNF/zVAD) in H9c2 cells, rat cardiomyoblasts. Time-course analyses of mitochondrial morphology showed that mitochondria were initially shortened after the addition of TNF/zVAD and then their length was restored, and the proportion of cells with elongated mitochondria at 12 h was larger in TNF/zVAD-treated cells than in non-treated cells (16.3 ± 0.9% vs. 8.0 ± 1.2%). The knockdown of dynamin-related protein 1 (Drp1) and fission 1, fission promoters, and treatment with Mdivi-1, a Drp-1 inhibitor, had no effect on TNF/zVAD-induced necroptosis. In contrast, TNF/zVAD-induced necroptosis was attenuated by the knockdown of mitofusin 1/2 (Mfn1/2) and optic atrophy-1 (Opa1), proteins that are indispensable for mitochondrial fusion, and the attenuation of necroptosis was not canceled by treatment with Mdivi-1. The expression of TGFβ-activated kinase (TAK1), a negative regulator of RIP1 activity, was upregulated and the TNF/zVAD-induced RIP1-Ser166 phosphorylation, an index of RIP1 activity, was mitigated by the knockdown of Mfn1/2 or Opa1. Pharmacological TAK1 inhibition attenuated the protection afforded by Mfn1/2 and Opa1 knockdown. In conclusion, the inhibition of mitochondrial fusion increases TAK1 expression, leading to the attenuation of canonical necroptosis through the suppression of RIP1 activity

    SIRT2 inhibition protects against cardiac hypertrophy and ischemic injury

    No full text
    Sirtuins (SIRT) exhibit deacetylation or ADP-ribosyltransferase activity and regulate a wide range of cellular processes in the nucleus, mitochondria, and cytoplasm. The role of the only sirtuin that resides in the cytoplasm, SIRT2, in the development of ischemic injury and cardiac hypertrophy is not known. In this paper, we show that the hearts of mice with deletion of Sirt2 (Sirt2-/-) display improved cardiac function after ischemia-reperfusion (I/R) and pressure overload (PO), suggesting that SIRT2 exerts maladaptive effects in the heart in response to stress. Similar results were obtained in mice with cardiomyocyte-specific Sirt2 deletion. Mechanistic studies suggest that SIRT2 modulates cellular levels and activity of nuclear factor (erythroid-derived 2)-like 2 (NRF2), which results in reduced expression of antioxidant proteins. Deletion of Nrf2 in the hearts of Sirt2-/- mice reversed protection after PO. Finally, treatment of mouse hearts with a specific SIRT2 inhibitor reduced cardiac size and attenuates cardiac hypertrophy in response to PO. These data indicate that SIRT2 has detrimental effects in the heart and plays a role in cardiac response to injury and the progression of cardiac hypertrophy, which makes this protein a unique member of the SIRT family. Additionally, our studies provide a novel approach for treatment of cardiac hypertrophy and injury by targeting SIRT2 pharmacologically, providing a novel avenue for the treatment of these disorders

    Downregulation of extramitochondrial BCKDH and its uncoupling from AMP deaminase in type 2 diabetic OLETF rat hearts

    No full text
    Abstract Systemic branched‐chain amino acid (BCAA) metabolism is dysregulated in cardiometabolic diseases. We previously demonstrated that upregulated AMP deaminase 3 (AMPD3) impairs cardiac energetics in a rat model of obese type 2 diabetes, Otsuka Long‐Evans‐Tokushima fatty (OLETF). Here, we hypothesized that the cardiac BCAA levels and the activity of branched‐chain α‐keto acid dehydrogenase (BCKDH), a rate‐limiting enzyme in BCAA metabolism, are altered by type 2 diabetes (T2DM), and that upregulated AMPD3 expression is involved in the alteration. Performing proteomic analysis combined with immunoblotting, we discovered that BCKDH localizes not only to mitochondria but also to the endoplasmic reticulum (ER), where it interacts with AMPD3. Knocking down AMPD3 in neonatal rat cardiomyocytes (NRCMs) increased BCKDH activity, suggesting that AMPD3 negatively regulates BCKDH. Compared with control rats (Long‐Evans Tokushima Otsuka [LETO] rats), OLETF rats exhibited 49% higher cardiac BCAA levels and 49% lower BCKDH activity. In the cardiac ER of the OLETF rats, BCKDH‐E1α subunit expression was downregulated, while AMPD3 expression was upregulated, resulting in an 80% lower AMPD3‐E1α interaction compared to LETO rats. Knocking down E1α expression in NRCMs upregulated AMPD3 expression and recapitulated the imbalanced AMPD3‐BCKDH expressions observed in OLETF rat hearts. E1α knockdown in NRCMs inhibited glucose oxidation in response to insulin, palmitate oxidation, and lipid droplet biogenesis under oleate loading. Collectively, these data revealed previously unrecognized extramitochondrial localization of BCKDH in the heart and its reciprocal regulation with AMPD3 and imbalanced AMPD3‐BCKDH interactions in OLETF. Downregulation of BCKDH in cardiomyocytes induced profound metabolic changes that are observed in OLETF hearts, providing insight into mechanisms contributing to the development of diabetic cardiomyopathy

    Distinct impacts of sleep-disordered breathing on glycemic variability in patients with and without diabetes mellitus.

    No full text
    Sleep-disordered breathing (SDB) is highly prevalent in patients with diabetes mellitus (DM) and heart failure (HF) and contributes to poor cardiovascular outcomes. Enlarged glycemic variability (GV) is a risk factor of cardiac events independently of average blood glucose level, but the influence of SDB on GV is uncertain. In this study, we examined whether the impact of SDB on GV is modified by the presence of DM with or without HF.Two hundred three patients (67.5±14.1 [SD] years old, 132 males) who were admitted to our institute for examination or treatment of DM and/or HF underwent continuous glucose monitoring and polysomnography. Both HbA1c (8.0±2.0 vs. 5.7±0.4%) and mean amplitude of glycemic excursion (MAGE, median: 95.5 vs. 63.5 mg/dl) were significantly higher in a DM group (n = 100) than in a non-DM group (n = 103), but apnea-hypopnea index (AHI: 29.0±22.7 vs. 29.3±21.5) was similar in the two groups. AHI was correlated with log MAGE in the non-DM group but not in the DM group, and multivariate regression analysis revealed that AHI was an independent variable for log MAGE in the non-DM group but not in the DM group. We then divided the non-DM patients into two subgroups according to BNP level (100 pg/ml). AHI was positively correlated with log MAGE (r = 0.74, p<0.001) in the non-DM low-BNP subgroup, but such a correlation was not found in the non-DM high-BNP subgroup. Continuous positive airway pressure (CPAP) reduced MAGE from 75.3 to 53.0 mg/dl in the non-DM group but did not reduce MAGE in the DM group.Severity of SDB was associated with higher GV, but DM as well as HF diminished the contribution of SDB to GV. Treatment with CPAP was effective for reduction of GV only in patients without DM

    Relationship between severity of SDB and glucose variability in subgroups with different BNP levels.

    No full text
    <p>Scatterplots of log MAGE against AHI in the DM low-BNP subgroup (A), DM high-BNP subgroup (B), non-DM low-BNP subgroup (C) and non-DM high-BNP subgroup (D). Significant correlations were observed in the DM low-BNP subgroup (y = 0.002x+1.9, r = 0.26, p<0.05) and non-DM low-BNP subgroup (y = 0.005x+1.6, r = 0.74, p<0.01).</p
    corecore