57 research outputs found

    Growth of Antiperovskite Oxide Ca3SnO Films by Pulsed Laser Deposition

    Get PDF
    We report the epitaxial growth of Ca3SnO antiperovskite oxide films on (001)-oriented cubic yttria-stabilized zirconia (YSZ) substrates by using a conventional pulsed laser deposition (PLD) technique. In this work, a sintered Ca3SnO pellet is used as the ablation target. X-ray diffraction measurements demonstrate the (001) growth of Ca3SnO films with the antiperovskite structure and a cube-on-cube orientation relationship to the YSZ substrate. The successful synthesis of the antiperovskite phase is further confirmed by x-ray photoemission spectroscopy. These results strongly suggest that antiperovskite-oxide films can be directly grown on substrates from the target material using a PLD technique

    金属酸化物の表面電子構造と表面におけるキャリアダイナミクス

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 藤森 淳, 東京大学教授 末元 徹, 東京大学准教授 杉野 修, 東京大学准教授 溝川 貴司, 東京大学准教授 和達 大樹University of Tokyo(東京大学

    Emergence of quantum critical behavior in metallic quantum-well states of strongly correlated oxides

    Full text link
    Controlling quantum critical phenomena in strongly correlated electron systems, which emerge in the neighborhood of a quantum phase transition, is a major challenge in modern condensed matter physics. Quantum critical phenomena are generated from the delicate balance between long-range order and its quantum fluctuation. So far, the nature of quantum phase transitions has been investigated by changing a limited number of external parameters such as pressure and magnetic field. We propose a new approach for investigating quantum criticality by changing the strength of quantum fluctuation that is controlled by the dimensional crossover in metallic quantum well (QW) structures of strongly correlated oxides. With reducing layer thickness to the critical thickness of metal-insulator transition, crossover from a Fermi liquid to a non-Fermi liquid has clearly been observed in the metallic QW of SrVO3_3 by \textit{in situ} angle-resolved photoemission spectroscopy. Non-Fermi liquid behavior with the critical exponent α=1{\alpha} = 1 is found to emerge in the two-dimensional limit of the metallic QW states, indicating that a quantum critical point exists in the neighborhood of the thickness-dependent Mott transition. These results suggest that artificial QW structures provide a unique platform for investigating novel quantum phenomena in strongly correlated oxides in a controllable fashion.Comment: 6 pages, 3 figure

    Natural van der Waals heterostructural single crystals with both magnetic and topological properties

    Get PDF
    Heterostructures having both magnetism and topology are promising materials for the realization of exotic topological quantum states while challenging in synthesis and engineering. Here, we report natural magnetic van der Waals heterostructures of (MnBi2Te4)m(Bi2Te3)n that exhibit controllable magnetic properties while maintaining their topological surface states. The interlayer antiferromagnetic exchange coupling is gradually weakened as the separation of magnetic layers increases, and an anomalous Hall effect that is well coupled with magnetization and shows ferromagnetic hysteresis was observed below 5 K. The obtained homogeneous heterostructure with atomically sharp interface and intrinsic magnetic properties will be an ideal platform for studying the quantum anomalous Hall effect, axion insulator states, and the topological magnetoelectric effect.Comment: 40 pages, 15 figure

    Steady shocks around black holes produced by sub-keplerian flows with negative energy

    Get PDF
    We discuss a special case of formation of axisymmetric shocks in the accretion flow of ideal gas onto a Schwarzschild black hole: when the total energy of the flow is negative. The result of our analysis enlarges the parameter space for which these steady shocks are exhibited in the accretion of gas rotating around relativistic stellar objects. Since keplerian disks have negative total energy, we guess that, in this energy range, the production of the shock phenomenon might be easier than in the case of positive energy. So our outcome reinforces the view that sub-keplerian flows of matter may significantly affect the physics of the high energy radiation emission from black hole candidates. We give a simple procedure to obtain analytically the position of the shocks. The comparison of the analytical results with the data of 1D and 2D axisymmetric numerical simulations confirms that the shocks form and are stable.Comment: 5 pages, 5 figures, accepted by MNRAS on 10 November 200
    corecore