1,171 research outputs found

    Fast macroscopic-superposition-state generation by coherent driving

    Get PDF
    We propose a scheme to generate macroscopic superposition states in spin ensembles, where a coherent driving field is applied to accelerate the generation of macroscopic superposition states. The numerical calculation demonstrates that this approach allows us to generate a superposition of two classically distinct states of the spin ensemble with a high fidelity above 0.96 for 300 spins. For the larger spin ensemble, though the fidelity slightly decline, it maintains above 0.85 for an ensemble of 500 spins. The time to generate a macroscopic superposition state is also numerically calculated, which shows that the significantly shortened generation time allows us to achieve such macroscopic superposition states within a typical coherence time of the system.Comment: 17 pages, 15 figure

    Experimental generation of four-mode continuous-variable cluster states

    Full text link
    Continuous-variable Gaussian cluster states are a potential resource for universal quantum computation. They can be efficiently and unconditionally built from sources of squeezed light using beam splitters. Here we report on the generation of three different kinds of continuous-variable four-mode cluster states. In our realization, the resulting cluster-type correlations are such that no corrections other than simple phase-space displacements would be needed when quantum information propagates through these states. At the same time, the inevitable imperfections from the finitely squeezed resource states and from additional thermal noise are minimized, as no antisqueezing components are left in the cluster states.Comment: 5 pages, 4 figure

    Precision Measurements Using Squeezed Spin States via Two-axis Counter-twisting Interactions

    Get PDF
    We show that the two-axis counter twisting interaction squeezes a coherent spin state into three states of interest in quantum information, namely, the twin-Fock state, the equally-weighted superposition state, and the state that achieves the Heisenberg limit of optimal sensitivity defined by the Cramer-Rao inequality in addition to the well-known Heisenberg-limited state of spin fluctuations.Comment: 5 pages, 3 figure

    Multi-band quantum ratchets

    Full text link
    We investigate directed motion in non-adiabatically rocked ratchet systems sustaining few bands below the barrier. Upon restricting the dynamics to the lowest M bands, the total system-plus-bath Hamiltonian is mapped onto a discrete tight-binding model containing all the information both on the intra- and inter-well tunneling motion. A closed form for the current in the incoherent tunneling regime is obtained. In effective single-band ratchets, no current rectification occurs. We apply our theory to describe rectification effects in vortex quantum ratchets devices. Current reversals upon variation of the ac-field amplitude or frequency are predicted.Comment: Accepted for publication in Physical Review Letter

    Implementation of screened hybrid functionals based on the Yukawa potential within the LAPW basis set

    Full text link
    The implementation of screened hybrid functionals into the WIEN2k code, which is based on the LAPW basis set, is reported. The Hartree-Fock exchange energy and potential are screened by means of the Yukawa potential as proposed by Bylander and Kleinman [Phys. Rev. B 41, 7868 (1990)] for the calculation of the electronic structure of solids with the screened-exchange local density approximation. Details of the formalism, which is based on the method of Massidda, Posternak, and Baldereschi [Phys. Rev. B 48, 5058 (1993)] for the unscreened Hartree-Fock exchange are given. The results for the transition-energy and structural properties of several test cases are presented. Results of calculations of the Cu electric-field gradient in Cu2O are also presented, and it is shown that the hybrid functionals are much more accurate than the standard local-density or generalized gradient approximations
    corecore