1,098 research outputs found

    Effective-Mass Klein-Gordon-Yukawa Problem for Bound and Scattering States

    Get PDF
    Bound and scattering state solutions of the effective-mass Klein-Gordon equation are obtained for the Yukawa potential with any angular momentum â„“\ell. Energy eigenvalues, normalized wave functions and scattering phase shifts are calculated as well as for the constant mass case. Bound state solutions of the Coulomb potential are also studied as a limiting case. Analytical and numerical results are compared with the ones obtained before.Comment: 13 pages, 1 figur

    3D Finite Volume Simulation of Accretion Discs with Spiral Shocks

    Get PDF
    We perform 2D and 3D numerical simulations of an accretion disc in a close binary system using the Simplified Flux vector Splitting (SFS) finite volume method. In our calculations, gas is assumed to be the ideal one, and we calculate the cases with gamma=1.01, 1.05, 1.1 and 1.2. The mass ratio of the mass losing star to the mass accreting star is unity. Our results show that spiral shocks are formed on the accretion disc in all cases. In 2D calculations we find that the smaller gamma is, the more tightly the spiral winds. We observe this trend in 3D calculations as well in somewhat weaker sense.Comment: 2 pages, LaTeX with 2 ps figures using crckapb.sty. To appear in the Proceedings of Numerical Astrophysics 1998, Tokyo, Japan, 10-13 March, 1998, eds. S. M. Miyama, K. Tomisaka and T. Hanawa (Kluwer Academic Publishers

    Hadron-hadron interaction from SU(2) lattice QCD

    Full text link
    We evaluate interhadron interactions in two-color lattice QCD from Bethe-Salpeter amplitudes on the Euclidean lattice. The simulations are performed in quenched SU(2) QCD with the plaquette gauge action at β=2.45\beta = 2.45 and the Wilson quark action. We concentrate on S-wave scattering states of two scalar diquarks. Evaluating different flavor combinations with various quark masses, we try to find out the ingredients in hadronic interactions. Between two scalar diquarks (uCγ5du C\gamma_5 d, the lightest baryon in SU(2) system), we observe repulsion in short-range region, even though present quark masses are not very light. We define and evaluate the "quark-exchange part" in the interaction, which is induced by adding quark-exchange diagrams, or equivalently, by introducing Pauli blocking among some of quarks. The repulsive force in short-distance region arises only from the "quark-exchange part", and disappears when quark-exchange diagrams are omitted. We find that the strength of repulsion grows in light quark-mass regime and its quark-mass dependence is similar to or slightly stronger than that of the color-magnetic interaction by one-gluon-exchange (OGE) processes. It is qualitatively consistent with the constituent-quark model picture that a color-magnetic interaction among quarks is the origin of repulsion. We also find a universal long-range attractive force, which enters in any flavor channels of two scalar diquarks and whose interaction range and strength are quark-mass independent. The weak quark-mass dependence of interaction ranges in each component implies that meson-exchange contributions are small and subdominant, and the other contributions, {\it ex.} flavor exchange processes, color-Coulomb or color-magnetic interactions, are considered to be predominant, in the quark-mass range we evaluated.Comment: 14 pages, 20 figure

    Spiral Structure in IP Peg: Confronting Theory and Observations

    Get PDF
    The first convincing piece of evidence of spiral structure in the accretion disc in IP Pegasi was found by Steeghs et al. (1997). We performed two kinds of 2D hydrodynamic simulations, a SFS finite volume scheme and a SPH scheme, with a mass ratio of 0.5. Both results agreed well with each other. We constructed Doppler maps and line flux-binary phase relations based on density distributions, the results agreeing well with those obtained by observation.Comment: 4 pages, LaTeX with 2 ps figures using crckapb.sty. To appear in the Proceedings of Numerical Astrophysics 1998, Tokyo, Japan, 10-13 March, 1998, eds. S. M. Miyama, K. Tomisaka and T. Hanawa (Kluwer Academic Publishers
    • …
    corecore