9 research outputs found
Phosphate starvation response precedes abscisic acid response under progressive mild drought in plants
Abstract Drought severely damages crop production, even under conditions so mild that the leaves show no signs of wilting. However, it is unclear how field-grown plants respond to mild drought. Here, we show through six years of field trials that ridges are a useful experimental tool to mimic mild drought stress in the field. Mild drought reduces inorganic phosphate levels in the leaves to activate the phosphate starvation response (PSR) in soybean plants in the field. Using Arabidopsis thaliana and its mutant plants grown in pots under controlled environments, we demonstrate that PSR occurs before abscisic acid response under progressive mild drought and that PSR plays a crucial role in plant growth under mild drought. Our observations in the field and laboratory using model crop and experimental plants provide insight into the molecular response to mild drought in field-grown plants and the relationship between nutrition and drought stress response
KLF15 Enables Rapid Switching between Lipogenesis and Gluconeogenesis during Fasting
SummaryHepatic lipogenesis is nutritionally regulated (i.e., downregulated during fasting and upregulated during the postprandial state) as an adaptation to the nutritional environment. While alterations in the expression level of the transcription factor SREBP-1c are known to be critical for nutritionally regulated lipogenesis, upstream mechanisms governing Srebf1 expression remain unclear. Here, we show that the fasting-induced transcription factor KLF15, a key regulator of gluconeogenesis, forms a complex with LXR/RXR, specifically on the Srebf1 promoter. This complex recruits the corepressor RIP140 instead of the coactivator SRC1, resulting in reduced Srebf1 and thus downstream lipogenic enzyme expression during the early and euglycemic period of fasting prior to hypoglycemia and PKA activation. Through this mechanism, KLF15 overexpression specifically ameliorates hypertriglyceridemia without affecting LXR-mediated cholesterol metabolism. These findings reveal a key molecular link between glucose and lipid metabolism and have therapeutic implications for the treatment of hyperlipidemia