11 research outputs found

    Synthesis and Structural Characterization of Lithium, Potassium, Magnesium, and Heavier Group 14 Metal Complexes Derived from 2‑Quinolyl-Linked (Thiophosphorano)methane

    No full text
    The synthesis and structural characterization of lithium, magnesium, potassium, and a series of low-valent group 14 metal compounds derived from the novel 2-quinolyl-linked phosphoranosulfide CH<sub>2</sub>(<sup><i>i</i></sup>Pr<sub>2</sub>PS)­(C<sub>9</sub>H<sub>6</sub>N-2) (<b>3</b>) are reported. The monoanionic thiophosphinoyl lithium complex [Li­(Et<sub>2</sub>O)­{CH­(<sup><i>i</i></sup>Pr<sub>2</sub>P–S)­(C<sub>9</sub>H<sub>6</sub>N-2)}]<sub>2</sub> (<b>4</b>) and magnesium complex [Mg­{CH­(<sup><i>i</i></sup>Pr<sub>2</sub>P–S)­(C<sub>9</sub>H<sub>6</sub>N-2)}<sub>2</sub>] (<b>5</b>) have been prepared from the reaction of <b>3</b> with 1 equiv of <sup><i>n</i></sup>BuLi or 0.5 equiv of <sup><i>n</i></sup>Bu<sub>2</sub>Mg in THF. Metathesis of <b>4</b> with 2 equiv of K<sup><i>t</i></sup>BuO afforded the corresponding polymeric thiophosphinoyl potassium complex [K­{CH­(<sup><i>i</i></sup>Pr<sub>2</sub>P–S)­(C<sub>9</sub>H<sub>6</sub>N-2)}]<sub><i>n</i></sub> (<b>6</b>). The metathesis reaction of <b>4</b> with GeCl<sub>2</sub>·(dioxane) and PbCl<sub>2</sub> afforded the “open-box” 1,3-digermacyclobutane [Ge­{μ<sub>2</sub>-C­(<sup><i>i</i></sup>Pr<sub>2</sub>PS)­(C<sub>9</sub>H<sub>6</sub>N-2)]<sub>2</sub> (<b>9</b>) and “twisted-step” 1,3-diplumbacyclobutane [Pb­{μ<sub>2</sub>-C­(<sup><i>i</i></sup>Pr<sub>2</sub>PS)­(C<sub>9</sub>H<sub>6</sub>N-2)]<sub>2</sub> (<b>10</b>), respectively. Reaction of <b>3</b> with 1 equiv of M­{N­(SiMe<sub>3</sub>)<sub>2</sub>}<sub>2</sub> (M = Sn, Pb) afforded the corresponding “open-box” 1,3-distannacyclobutane [Sn­{μ<sub>2</sub>-C­(<sup><i>i</i></sup>Pr<sub>2</sub>PS)­(C<sub>9</sub>H<sub>6</sub>N-2)]<sub>2</sub> (<b>11</b>) and [Pb­{μ<sub>2</sub>-C­(<sup><i>i</i></sup>Pr<sub>2</sub>PS)­(C<sub>9</sub>H<sub>6</sub>N-2)]<sub>2</sub> (<b>12</b>), respectively. The structures of <b>3</b>–<b>6</b> and <b>9</b>–<b>12</b> have been determined by X-ray crystallography

    Synthesis and Structural Characterization of Lithium, Potassium, Magnesium, and Heavier Group 14 Metal Complexes Derived from 2‑Quinolyl-Linked (Thiophosphorano)methane

    No full text
    The synthesis and structural characterization of lithium, magnesium, potassium, and a series of low-valent group 14 metal compounds derived from the novel 2-quinolyl-linked phosphoranosulfide CH<sub>2</sub>(<sup><i>i</i></sup>Pr<sub>2</sub>PS)­(C<sub>9</sub>H<sub>6</sub>N-2) (<b>3</b>) are reported. The monoanionic thiophosphinoyl lithium complex [Li­(Et<sub>2</sub>O)­{CH­(<sup><i>i</i></sup>Pr<sub>2</sub>P–S)­(C<sub>9</sub>H<sub>6</sub>N-2)}]<sub>2</sub> (<b>4</b>) and magnesium complex [Mg­{CH­(<sup><i>i</i></sup>Pr<sub>2</sub>P–S)­(C<sub>9</sub>H<sub>6</sub>N-2)}<sub>2</sub>] (<b>5</b>) have been prepared from the reaction of <b>3</b> with 1 equiv of <sup><i>n</i></sup>BuLi or 0.5 equiv of <sup><i>n</i></sup>Bu<sub>2</sub>Mg in THF. Metathesis of <b>4</b> with 2 equiv of K<sup><i>t</i></sup>BuO afforded the corresponding polymeric thiophosphinoyl potassium complex [K­{CH­(<sup><i>i</i></sup>Pr<sub>2</sub>P–S)­(C<sub>9</sub>H<sub>6</sub>N-2)}]<sub><i>n</i></sub> (<b>6</b>). The metathesis reaction of <b>4</b> with GeCl<sub>2</sub>·(dioxane) and PbCl<sub>2</sub> afforded the “open-box” 1,3-digermacyclobutane [Ge­{μ<sub>2</sub>-C­(<sup><i>i</i></sup>Pr<sub>2</sub>PS)­(C<sub>9</sub>H<sub>6</sub>N-2)]<sub>2</sub> (<b>9</b>) and “twisted-step” 1,3-diplumbacyclobutane [Pb­{μ<sub>2</sub>-C­(<sup><i>i</i></sup>Pr<sub>2</sub>PS)­(C<sub>9</sub>H<sub>6</sub>N-2)]<sub>2</sub> (<b>10</b>), respectively. Reaction of <b>3</b> with 1 equiv of M­{N­(SiMe<sub>3</sub>)<sub>2</sub>}<sub>2</sub> (M = Sn, Pb) afforded the corresponding “open-box” 1,3-distannacyclobutane [Sn­{μ<sub>2</sub>-C­(<sup><i>i</i></sup>Pr<sub>2</sub>PS)­(C<sub>9</sub>H<sub>6</sub>N-2)]<sub>2</sub> (<b>11</b>) and [Pb­{μ<sub>2</sub>-C­(<sup><i>i</i></sup>Pr<sub>2</sub>PS)­(C<sub>9</sub>H<sub>6</sub>N-2)]<sub>2</sub> (<b>12</b>), respectively. The structures of <b>3</b>–<b>6</b> and <b>9</b>–<b>12</b> have been determined by X-ray crystallography

    Synthesis and Structural Characterization of a Tin Analogue of Allene

    No full text
    The reaction of [MgC­(PPh<sub>2</sub>S)<sub>2</sub>(THF)]<sub>2</sub> (<b>1</b>; THF = tetrahydrofuran) with 1 equiv of SnCl<sub>4</sub> in THF afforded a novel tin analogue of allene [Sn­{C­(PPh<sub>2</sub>S)<sub>2</sub>}<sub>2</sub>] (<b>2</b>). The structure of compound <b>2</b> has been characterized by X-ray crystallography and NMR spectroscopy

    Noticiero de Vigo : diario independiente de la mañana: Ano XXI Número 5470 - 1905 agosto 25

    No full text
    Bisgermavinylidene [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>CGe→GeC­(PPh<sub>2</sub>NSiMe<sub>3</sub>)<sub>2</sub>] (<b>1</b>) has been used as a source of unstable germavinylidene for the synthesis of a series of heterobinuclear complexes. The reaction of <b>1</b> with stoichiometric amounts of transition metal chlorides MCl<sub>2</sub> (M = Mn, Fe) yielded [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>(GeCl)­CMn­(μ-Cl)]<sub>2</sub> (<b>2</b>) and [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>(GeCl)­CFeCl] (<b>3</b>), respectively. Treatment of <b>1</b> with Me<sub>3</sub>SiN<sub>3</sub> gave the [2 + 3] cycloaddition product [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>CGeN­(SiMe<sub>3</sub>)­NN] (<b>4</b>). While similar reaction of <b>1</b> with (<sup><i>n</i></sup>Bu)<sub>3</sub>SnN<sub>3</sub> (<sup><i>n</i></sup>Bu = <i>n</i>-butyl) and water-borane adduct H<sub>2</sub>O → B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> afforded the 1,2-addition products [(Me<sub>3</sub>SiNPPh<sub>2</sub>)­{(<sup><i>n</i></sup>Bu)<sub>3</sub>Sn}­CPPh<sub>2</sub>NSiMe<sub>3</sub>GeN<sub>3</sub>] (<b>5</b>) and [HC­(PPh<sub>2</sub>NSiMe<sub>3</sub>)<sub>2</sub>Ge­(OH)­B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>] (<b>6</b>), respectively. The results suggested that the germanium–carbon bond in germavinylidene is capable of forming addition reaction products. The X-ray structures of <b>2</b>–<b>6</b> have been determined

    Synthesis of Hetero-Binuclear Complexes from Bisgermavinylidene

    No full text
    Bisgermavinylidene [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>CGe→GeC­(PPh<sub>2</sub>NSiMe<sub>3</sub>)<sub>2</sub>] (<b>1</b>) has been used as a source of unstable germavinylidene for the synthesis of a series of heterobinuclear complexes. The reaction of <b>1</b> with stoichiometric amounts of transition metal chlorides MCl<sub>2</sub> (M = Mn, Fe) yielded [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>(GeCl)­CMn­(μ-Cl)]<sub>2</sub> (<b>2</b>) and [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>(GeCl)­CFeCl] (<b>3</b>), respectively. Treatment of <b>1</b> with Me<sub>3</sub>SiN<sub>3</sub> gave the [2 + 3] cycloaddition product [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>CGeN­(SiMe<sub>3</sub>)­NN] (<b>4</b>). While similar reaction of <b>1</b> with (<sup><i>n</i></sup>Bu)<sub>3</sub>SnN<sub>3</sub> (<sup><i>n</i></sup>Bu = <i>n</i>-butyl) and water-borane adduct H<sub>2</sub>O → B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> afforded the 1,2-addition products [(Me<sub>3</sub>SiNPPh<sub>2</sub>)­{(<sup><i>n</i></sup>Bu)<sub>3</sub>Sn}­CPPh<sub>2</sub>NSiMe<sub>3</sub>GeN<sub>3</sub>] (<b>5</b>) and [HC­(PPh<sub>2</sub>NSiMe<sub>3</sub>)<sub>2</sub>Ge­(OH)­B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>] (<b>6</b>), respectively. The results suggested that the germanium–carbon bond in germavinylidene is capable of forming addition reaction products. The X-ray structures of <b>2</b>–<b>6</b> have been determined

    Reactivity Study of a Pyridyl-1-azaallylgermanium(I) Dimer: Synthesis of Heavier Ether and Ester Analogues of Germanium

    No full text
    The reactivity study of a pyridyl-1-azaallylgermanium­(I) dimer LGe–GeL [<b>1</b>; L = N­(SiMe<sub>3</sub>)­C­(Ph)­C­(SiMe<sub>3</sub>)­(C<sub>5</sub>H<sub>4</sub>N-2)] with different stoichiometric ratios of elemental selenium and tellurium is described. The reactions of <b>1</b> with 1 equiv of selenium and tellurium afforded the first examples of heavier ether analogues of germanium, bis­(germylene) selenide and telluride LGe­(μ-E)­GeL [E = Se (<b>2</b>) and Te (<b>3</b>)], respectively. Meanwhile, the reactions of <b>1</b> with 2 equiv of selenium and tellurium gave the heavier ester analogues LGeE­(μ-E)­GeL [E = Se (<b>4</b>) and (<b>5</b>)]. All compounds have been characterized by X-ray crystallography and multinuclear NMR spectroscopy

    Synthesis of Hetero-Binuclear Complexes from Bisgermavinylidene

    No full text
    Bisgermavinylidene [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>CGe→GeC­(PPh<sub>2</sub>NSiMe<sub>3</sub>)<sub>2</sub>] (<b>1</b>) has been used as a source of unstable germavinylidene for the synthesis of a series of heterobinuclear complexes. The reaction of <b>1</b> with stoichiometric amounts of transition metal chlorides MCl<sub>2</sub> (M = Mn, Fe) yielded [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>(GeCl)­CMn­(μ-Cl)]<sub>2</sub> (<b>2</b>) and [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>(GeCl)­CFeCl] (<b>3</b>), respectively. Treatment of <b>1</b> with Me<sub>3</sub>SiN<sub>3</sub> gave the [2 + 3] cycloaddition product [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>CGeN­(SiMe<sub>3</sub>)­NN] (<b>4</b>). While similar reaction of <b>1</b> with (<sup><i>n</i></sup>Bu)<sub>3</sub>SnN<sub>3</sub> (<sup><i>n</i></sup>Bu = <i>n</i>-butyl) and water-borane adduct H<sub>2</sub>O → B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> afforded the 1,2-addition products [(Me<sub>3</sub>SiNPPh<sub>2</sub>)­{(<sup><i>n</i></sup>Bu)<sub>3</sub>Sn}­CPPh<sub>2</sub>NSiMe<sub>3</sub>GeN<sub>3</sub>] (<b>5</b>) and [HC­(PPh<sub>2</sub>NSiMe<sub>3</sub>)<sub>2</sub>Ge­(OH)­B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>] (<b>6</b>), respectively. The results suggested that the germanium–carbon bond in germavinylidene is capable of forming addition reaction products. The X-ray structures of <b>2</b>–<b>6</b> have been determined

    Synthesis of Hetero-Binuclear Complexes from Bisgermavinylidene

    No full text
    Bisgermavinylidene [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>CGe→GeC­(PPh<sub>2</sub>NSiMe<sub>3</sub>)<sub>2</sub>] (<b>1</b>) has been used as a source of unstable germavinylidene for the synthesis of a series of heterobinuclear complexes. The reaction of <b>1</b> with stoichiometric amounts of transition metal chlorides MCl<sub>2</sub> (M = Mn, Fe) yielded [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>(GeCl)­CMn­(μ-Cl)]<sub>2</sub> (<b>2</b>) and [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>(GeCl)­CFeCl] (<b>3</b>), respectively. Treatment of <b>1</b> with Me<sub>3</sub>SiN<sub>3</sub> gave the [2 + 3] cycloaddition product [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>CGeN­(SiMe<sub>3</sub>)­NN] (<b>4</b>). While similar reaction of <b>1</b> with (<sup><i>n</i></sup>Bu)<sub>3</sub>SnN<sub>3</sub> (<sup><i>n</i></sup>Bu = <i>n</i>-butyl) and water-borane adduct H<sub>2</sub>O → B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> afforded the 1,2-addition products [(Me<sub>3</sub>SiNPPh<sub>2</sub>)­{(<sup><i>n</i></sup>Bu)<sub>3</sub>Sn}­CPPh<sub>2</sub>NSiMe<sub>3</sub>GeN<sub>3</sub>] (<b>5</b>) and [HC­(PPh<sub>2</sub>NSiMe<sub>3</sub>)<sub>2</sub>Ge­(OH)­B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>] (<b>6</b>), respectively. The results suggested that the germanium–carbon bond in germavinylidene is capable of forming addition reaction products. The X-ray structures of <b>2</b>–<b>6</b> have been determined

    Synthesis of Hetero-Binuclear Complexes from Bisgermavinylidene

    No full text
    Bisgermavinylidene [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>CGe→GeC­(PPh<sub>2</sub>NSiMe<sub>3</sub>)<sub>2</sub>] (<b>1</b>) has been used as a source of unstable germavinylidene for the synthesis of a series of heterobinuclear complexes. The reaction of <b>1</b> with stoichiometric amounts of transition metal chlorides MCl<sub>2</sub> (M = Mn, Fe) yielded [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>(GeCl)­CMn­(μ-Cl)]<sub>2</sub> (<b>2</b>) and [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>(GeCl)­CFeCl] (<b>3</b>), respectively. Treatment of <b>1</b> with Me<sub>3</sub>SiN<sub>3</sub> gave the [2 + 3] cycloaddition product [(Me<sub>3</sub>SiNPPh<sub>2</sub>)<sub>2</sub>CGeN­(SiMe<sub>3</sub>)­NN] (<b>4</b>). While similar reaction of <b>1</b> with (<sup><i>n</i></sup>Bu)<sub>3</sub>SnN<sub>3</sub> (<sup><i>n</i></sup>Bu = <i>n</i>-butyl) and water-borane adduct H<sub>2</sub>O → B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> afforded the 1,2-addition products [(Me<sub>3</sub>SiNPPh<sub>2</sub>)­{(<sup><i>n</i></sup>Bu)<sub>3</sub>Sn}­CPPh<sub>2</sub>NSiMe<sub>3</sub>GeN<sub>3</sub>] (<b>5</b>) and [HC­(PPh<sub>2</sub>NSiMe<sub>3</sub>)<sub>2</sub>Ge­(OH)­B­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>] (<b>6</b>), respectively. The results suggested that the germanium–carbon bond in germavinylidene is capable of forming addition reaction products. The X-ray structures of <b>2</b>–<b>6</b> have been determined

    Oxo-Bridged Bis(group 4 metal unsymmetric phosphonium-stabilized carbene) Complexes

    No full text
    The synthesis and reactivity of oxo-bridged bis­(group 4 metal unsymmetric phosphonium-stabilized carbene) complexes are described. The reaction of [CH<sub>2</sub>R<sup>N</sup>R<sup>S</sup>] (<b>1</b>; R<sup>N</sup> = PPh<sub>2</sub>NSiMe<sub>3</sub>, R<sup>S</sup> = PPh<sub>2</sub>S) with 1 equiv of [M­(NMe<sub>2</sub>)<sub>4</sub>] (M = Zr, Hf) afforded the group 4 metal unsymmetric phosphonium-stabilized carbene complexes [M­(NMe<sub>2</sub>)<sub>2</sub>(CR<sup>N</sup>R<sup>S</sup>)] (M = Zr (<b>4</b>), Hf (<b>5</b>)). Their reactions with water in toluene afforded the oxo-bridged derivatives O­[M­(NMe<sub>2</sub>)­(CR<sup>N</sup>R<sup>S</sup>)]<sub>2</sub> (M = Zr (<b>6</b>), Hf (<b>7</b>)). Compound <b>6</b> underwent an insertion reaction with AdNCO to form O­[Zr­{OC­(NMe<sub>2</sub>)­NAd}­(CR<sup>N</sup>R<sup>S</sup>)]<sub>2</sub> (<b>8</b>; Ad = adamantyl). Compounds <b>4</b>–<b>8</b> were characterized by NMR spectroscopy and X-ray crystallography
    corecore