885 research outputs found

    Synthesis, vacuum ultraviolet and near ultraviolet-excited luminescent properties of GdCaAl3O7: RE3+ (RE=Eu, Tb)

    Get PDF
    Vacuum ultraviolet (VUV) excitation and photoluminescent (PL) properties of Eu3+ and Tb3+ ion-doped aluminate phosphors, GdCaAl 3O7:Eu3+ and GdCaAl3O 7:Tb3+ have been investigated. X-ray diffraction (XRD) patterns indicate that the phosphor GdCaAl3O7 forms without impurity phase at 900 °C. Field emission scanning electron microscopy (FE-SEM) images show that the particle size of the phosphor is less than 3 μm. Upon excitation with VUV irradiation, the phosphors show a strong emission at around 619 nm corresponding to the forced electric dipole 5D0→7F2 transition of Eu 3+, and at around 545 nm corresponding to the 5D 4→7F5 transition of Tb3+. The results reveal that both GdCaAl3O7:RE3+ (RE=Eu, Tb) are potential candidates as red and green phosphors, respectively, for use in plasma display panel (PDP). © 2005 Elsevier Inc. All rights reserved.postprin

    General Relativistic Simulations of Slowly and Differentially Rotating Magnetized Neutron Stars

    Get PDF
    We present long-term (~10^4 M) axisymmetric simulations of differentially rotating, magnetized neutron stars in the slow-rotation, weak magnetic field limit using a perturbative metric evolution technique. Although this approach yields results comparable to those obtained via nonperturbative (BSSN) evolution techniques, simulations performed with the perturbative metric solver require about 1/4 the computational resources at a given resolution. This computational efficiency enables us to observe and analyze the effects of magnetic braking and the magnetorotational instability (MRI) at very high resolution. Our simulations demonstrate that (1) MRI is not observed unless the fastest-growing mode wavelength is resolved by more than about 10 gridpoints; (2) as resolution is improved, the MRI growth rate converges, but due to the small-scale turbulent nature of MRI, the maximum growth amplitude increases, but does not exhibit convergence, even at the highest resolution; and (3) independent of resolution, magnetic braking drives the star toward uniform rotation as energy is sapped from differential rotation by winding magnetic fields.Comment: 21 pages, 11 figures, published in Phys.Rev.

    {BOAO Photometric Survey of Galactic Open Clusters. II. Physical Parameters of 12 Open Clusters

    Full text link
    We have initiated a long-term project, the BOAO photometric survey of open clusters, to enlarge our understanding of galactic structure using UBVI CCD photometry of open clusters which have been little studied before. This is the second paper of the project in which we present the photometry of 12 open clusters. We have determined the cluster parameters by fitting the Padova isochrones to the color-magnitude diagrams of the clusters. All the clusters except for Be 0 and NGC 1348 are found to be intermediate-age to old (0.2 - 4.0 Gyrs) open clusters with a mean metallicity of [Fe/H] = 0.0.Comment: 11 page

    Evolution of magnetized, differentially rotating neutron stars: Simulations in full general relativity

    Get PDF
    We study the effects of magnetic fields on the evolution of differentially rotating neutron stars, which can form in stellar core collapse or binary neutron star coalescence. Magnetic braking and the magnetorotational instability (MRI) both redistribute angular momentum; the outcome of the evolution depends on the star's mass and spin. Simulations are carried out in axisymmetry using our recently developed codes which integrate the coupled Einstein-Maxwell-MHD equations. For initial data, we consider three categories of differentially rotating, equilibrium configurations, which we label normal, hypermassive and ultraspinning. Hypermassive stars have rest masses exceeding the mass limit for uniform rotation. Ultraspinning stars are not hypermassive, but have angular momentum exceeding the maximum for uniform rotation at the same rest mass. We show that a normal star will evolve to a uniformly rotating equilibrium configuration. An ultraspinning star evolves to an equilibrium state consisting of a nearly uniformly rotating central core, surrounded by a differentially rotating torus with constant angular velocity along magnetic field lines, so that differential rotation ceases to wind the magnetic field. In addition, the final state is stable against the MRI, although it has differential rotation. For a hypermassive neutron star, the MHD-driven angular momentum transport leads to catastrophic collapse of the core. The resulting rotating black hole is surrounded by a hot, massive, magnetized torus undergoing quasistationary accretion, and a magnetic field collimated along the spin axis--a promising candidate for the central engine of a short gamma-ray burst. (Abridged)Comment: 27 pages, 30 figure

    Temporal and Spatial Variability of Precipitation from Observations and Models

    Get PDF
    Principal component analysis (PCA) is utilized to explore the temporal and spatial variability of precipitation from GPCP and a CAM5 simulation from 1979 to 2010. In the tropical region, the interannual variability of tropical precipitation is characterized by two dominant modes (El Niño and El Niño Modoki). The first and second modes of tropical GPCP precipitation capture 31.9% and 15.6% of the total variance, respectively. The first mode has positive precipitation anomalies over the western Pacific and negative precipitation anomalies over the central and eastern Pacific. The second mode has positive precipitation anomalies over the central Pacific and negative precipitation anomalies over the western and eastern Pacific. Similar variations are seen in the first two modes of tropical precipitation from a CAM5 simulation, although the magnitudes are slightly weaker than in the observations. Over the Northern Hemisphere (NH) high latitudes, the first mode, capturing 8.3% of the total variance of NH GPCP precipitation, is related to the northern annular mode (NAM). During the positive phase of NAM, there are negative precipitation anomalies over the Arctic and positive precipitation anomalies over the midlatitudes. Over the Southern Hemisphere (SH) high latitudes, the first mode, capturing 13.2% of the total variance of SH GPCP precipitation, is related to the southern annular mode (SAM). During the positive phase of the SAM, there are negative precipitation anomalies over the Antarctic and positive precipitation anomalies over the midlatitudes. The CAM5 precipitation simulation demonstrates similar results to those of the observations. However, they do not capture both the high precipitation anomalies over the northern Pacific Ocean or the position of the positive precipitation anomalies in the SH

    Magnetorotational collapse of massive stellar cores to neutron stars: Simulations in full general relativity

    Get PDF
    We study magnetohydrodynamic (MHD) effects arising in the collapse of magnetized, rotating, massive stellar cores to proto-neutron stars (PNSs). We perform axisymmetric numerical simulations in full general relativity with a hybrid equation of state. The formation and early evolution of a PNS are followed with a grid of 2500 x 2500 zones, which provides better resolution than in previous (Newtonian) studies. We confirm that significant differential rotation results even when the rotation of the progenitor is initially uniform. Consequently, the magnetic field is amplified both by magnetic winding and the magnetorotational instability (MRI). Even if the magnetic energy E_EM is much smaller than the rotational kinetic energy T_rot at the time of PNS formation, the ratio E_EM/T_rot increases to 0.1-0.2 by the magnetic winding. Following PNS formation, MHD outflows lead to losses of rest mass, energy, and angular momentum from the system. The earliest outflow is produced primarily by the increasing magnetic stress caused by magnetic winding. The MRI amplifies the poloidal field and increases the magnetic stress, causing further angular momentum transport and helping to drive the outflow. After the magnetic field saturates, a nearly stationary, collimated magnetic field forms near the rotation axis and a Blandford-Payne type outflow develops along the field lines. These outflows remove angular momentum from the PNS at a rate given by \dot{J} \sim \eta E_EM C_B, where \eta is a constant of order 0.1 and C_B is a typical ratio of poloidal to toroidal field strength. As a result, the rotation period quickly increases for a strongly magnetized PNS until the degree of differential rotation decreases. Our simulations suggest that rapidly rotating, magnetized PNSs may not give rise to rapidly rotating neutron stars.Comment: 28 pages, 20 figures, accepted for publication in Phys. Rev.

    Magnetorotational collapse of very massive stars to black holes in full general relativity

    Full text link
    We perform axisymmetric simulations of the magnetorotational collapse of very massive stars in full general relativity. Our simulations are applicable to the collapse of supermassive stars (M > 10^3M_sun) and to very massive Pop III stars. We model our initial configurations by n=3 polytropes. The ratio of magnetic to rotational kinetic energy in these configurations is chosen to be small (1% and 10%). We find that such magnetic fields do not affect the initial collapse significantly. The core collapses to a black hole, after which black hole excision is employed to continue the evolution long enough for the hole to reach a quasi-stationary state. We find that the black hole mass is M_h = 0.95M and its spin parameter is J_h/M_h^2 = 0.7, with the remaining matter forming a torus around the black hole. We freeze the spacetime metric ("Cowling approximation") and continue to follow the evolution of the torus after the black hole has relaxed to quasi-stationary equilibrium. In the absence of magnetic fields, the torus settles down following ejection of a small amount of matter due to shock heating. When magnetic fields are present, the field lines gradually collimate along the hole's rotation axis. MHD shocks and the MRI generate MHD turbulence in the torus and stochastic accretion onto the central black hole. When the magnetic field is strong, a wind is generated in the torus, and the torus undergoes radial oscillations that drive episodic accretion onto the hole. These oscillations produce long-wavelength gravitational waves potentially detectable by LISA. The final state of the magnetorotational collapse always consists of a central black hole surrounded by a collimated magnetic field and a hot, thick accretion torus. This system is a viable candidate for the central engine of a long-soft gamma-ray burst.Comment: 17 pages, 13 figures, replaced with the published versio

    Mars Aeronomy Observer: Report of the Science Working Team

    Get PDF
    The Mars Aeronomy Observer (MAO) is a candidate follow-on mission to Mars Observer (MO) in the Planetary Observer Program. The four Mariner and two Viking spacecraft sent to Mars between 1965 and 1976 have provided a wealth of information concerning Martian planetology. The Mars Observer, to be launched in 1990, will build on their results by further examining the elemental and mineralogical composition of the surface, the strength and multipolar composition of the planetary magnetic field, the gravitational field and topography, and the circulation of the lower atmosphere. The Mars Aeronomy Observer is intended to address the last major aspects of Martian environment which have yet to be investigated: the upper atmosphere, the ionsphere, and the solar wind interaction region

    The Spectroscopy of Plasma Evolution from Astrophysical Radiation Mission

    Full text link
    The Spectroscopy of Plasma Evolution from Astrophysical Radiation (or the Far-ultraviolet Imaging Spectrograph) instruments, flown aboard the STSAT-1 satellite mission, have provided the first large-area spectral mapping of the cosmic far ultraviolet (FUV, lambda 900-1750 Ang) background. We observe diffuse radiation from hot (10^4 to 10^6 K) and ionized plasmas, molecular hydrogen, and dust scattered starlight. These data provide for the unprecedented detection and discovery of spectral emission from a variety of interstellar environments, including the general medium, molecular clouds, supernova remnants, and super-bubbles. We describe the mission and its data, present an overview of the diffuse FUV sky's appearance and spectrum, and introduce the scientific findings detailed later in this volume
    • …
    corecore