3 research outputs found

    Electronic and magnetic properties of epitaxial SrRhO3 films

    No full text
    The strong interplay of fundamental order parameters in complex oxides is known to give rise to exotic physical phenomena. The 4d transition-metal oxide SrRhO3 has generated much interest, but advances have been hindered by difficulties in preparing single-crystalline phases. Here we epitaxially stabilize high-quality single-crystalline SrRhO3 films and investigate their structural, electronic, and magnetic properties. We determine that their properties significantly differ from the paramagnetic metallic ground state that governs bulk samples and are strongly related to rotations of RhO6 octahedra

    Understanding Heterolytic H2 Cleavage and Water-Assisted Hydrogen Spillover on Fe3O4(001)-Supported Single Palladium Atoms

    Full text link
    The high specific activity and cost-effectiveness of single-atom catalysts (SACs) hold great promise for numerous catalytic chemistries. In hydrogenation reactions, the mechanisms of critical steps such as hydrogen activation and spillover are far from understood. Here, we employ a combination of scanning tunneling microscopy and density functional theory to demonstrate that on a model SAC comprised of single Pd atoms on Fe3O4(001), H2 dissociates heterolytically between Pd and surface oxygen. The efficient hydrogen spillover allows for continuous hydrogenation to high coverages, which ultimately leads to the lifting of Fe3O4 reconstruction and Pd reduction and destabilization. Water plays an important role in reducing the proton diffusion barrier, thereby facilitating the redistribution of hydroxyls away from Pd. Our study demonstrates a distinct H2 activation mechanism on single Pd atoms and corroborates the importance of charge transport on reducible support away from the active site
    corecore