43 research outputs found

    Cortisol dysregulation in anxiety infertile women and the influence on IVF treatment outcome

    Get PDF
    IntroductionDysregulation of the stress-regulatory hormone cortisol is associated with anxiety, but its potential impact on infertile women and in vitro fertilization (IVF) treatment remains unclear. This prospective cross-sectional study aimed at evaluating the dysregulation of cortisol and its correlation to anxiety in infertile women. The influence of stress on IVF outcomes was also investigated.MethodsA point-of-care test was used for the measurement of morning serum cortisol in 110 infertile women and 112 age-matching healthy individuals. A Self-Rating Anxiety Scale (SAS) was used for the anxiety assessment of infertile women, and 109 of them underwent IVF treatment starting with the GnRH-antagonist protocol. If clinical pregnancy was not achieved, more IVF cycles were conducted with adjusted protocols until the patients got pregnant or gave up.ResultsHigher morning serum cortisol level was identified for infertile patients, especially for the elder. Women with no anxiety showed significant differences in cortisol levels, monthly income, and BMI compared with those with severe anxiety. A strong correlation was found between the morning cortisol level and the SAS score. When the cutoff value is 22.25 μg/dL, cortisol concentration could predict the onset of anxiety with high accuracy (95.45%) among infertile women. After IVF treatments, women with high SAS scores (>50) or cortisol levels (>22.25 μg/dL) demonstrated a lower rate of pregnancy (8.0%-10.3%) and more IVF cycles, although the impact of anxiety was not affirmative.ConclusionHypersecretion of cortisol related to anxiety was prevalent among infertile women, but the influence of anxiety on multi-cycle IVF treatment was not affirmative due to the complicated treatment procedures. This study suggested that the assessment of psychological disorders and stress hormone dysregulation should not be overlooked. An anxiety questionnaire and rapid cortisol test might be included in the treatment protocol to provide better medical care

    Seizing the window of opportunity to mitigate the impact of climate change on the health of Chinese residents

    Get PDF
    The health threats posed by climate change in China are increasing rapidly. Each province faces different health risks. Without a timely and adequate response, climate change will impact lives and livelihoods at an accelerated rate and even prevent the achievement of the Healthy and Beautiful China initiatives. The 2021 China Report of the Lancet Countdown on Health and Climate Change is the first annual update of China’s Report of the Lancet Countdown. It comprehensively assesses the impact of climate change on the health of Chinese households and the measures China has taken. Invited by the Lancet committee, Tsinghua University led the writing of the report and cooperated with 25 relevant institutions in and outside of China. The report includes 25 indicators within five major areas (climate change impacts, exposures, and vulnerability; adaptation, planning, and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement) and a policy brief. This 2021 China policy brief contains the most urgent and relevant indicators focusing on provincial data: The increasing health risks of climate change in China; mixed progress in responding to climate change. In 2020, the heatwave exposures per person in China increased by 4.51 d compared with the 1986–2005 average, resulting in an estimated 92% increase in heatwave-related deaths. The resulting economic cost of the estimated 14500 heatwave-related deaths in 2020 is US$176 million. Increased temperatures also caused a potential 31.5 billion h in lost work time in 2020, which is equivalent to 1.3% of the work hours of the total national workforce, with resulting economic losses estimated at 1.4% of China’s annual gross domestic product. For adaptation efforts, there has been steady progress in local adaptation planning and assessment in 2020, urban green space growth in 2020, and health emergency management in 2019. 12 of 30 provinces reported that they have completed, or were developing, provincial health adaptation plans. Urban green space, which is an important heat adaptation measure, has increased in 18 of 31 provinces in the past decade, and the capacity of China’s health emergency management increased in almost all provinces from 2018 to 2019. As a result of China’s persistent efforts to clean its energy structure and control air pollution, the premature deaths due to exposure to ambient particulate matter of 2.5 μm or less (PM2.5) and the resulting costs continue to decline. However, 98% of China’s cities still have annual average PM2.5 concentrations that are more than the WHO guideline standard of 10 μg/m3. It provides policymakers and the public with up-to-date information on China’s response to climate change and improvements in health outcomes and makes the following policy recommendations. (1) Promote systematic thinking in the related departments and strengthen multi-departmental cooperation. Sectors related to climate and development in China should incorporate health perspectives into their policymaking and actions, demonstrating WHO’s and President Xi Jinping’s so-called health-in-all-policies principle. (2) Include clear goals and timelines for climate-related health impact assessments and health adaptation plans at both the national and the regional levels in the National Climate Change Adaptation Strategy for 2035. (3) Strengthen China’s climate mitigation actions and ensure that health is included in China’s pathway to carbon neutrality. By promoting investments in zero-carbon technologies and reducing fossil fuel subsidies, the current rebounding trend in carbon emissions will be reversed and lead to a healthy, low-carbon future. (4) Increase awareness of the linkages between climate change and health at all levels. Health professionals, the academic community, and traditional and new media should raise the awareness of the public and policymakers on the important linkages between climate change and health.</p

    Multi-Technology Driven R&D Cost Improvement Scheme and Application Utility of EESP in Energy-Intensive Manufacturing Industry

    No full text
    Facing the sustainable use of electric power resources, many countries in the world focus on the R&D investment and application of electrochemical energy storage projects (i.e., EESP). However, the high R&D cost of EESP has been hindering large-scale industrial promotion in the energy-intensive manufacturing industry represented by the tobacco industry. Reducing and controlling the R&D cost has become an urgent problem to be solved. In this context, this paper innovatively proposes a multi-technology driven R&D cost improvement scheme, which integrates WBS (i.e., Work Breakdown Structure), EVM (i.e., Earned Value Method), BD (i.e., Big Data), and ML (i.e., Machine Learning) methods. Especially, the influence of R&D cost improvement on EESP application performance is discussed through mathematical model analysis. The research indicates that reducing EESP R&D costs can significantly improve the stability of EESP power supply, and ultimately improve the application value of EESP in energy-intensive manufacturing industries. The R&D cost management scheme and technical method proposed in this paper have important theoretical guiding values and practical significance for accelerating the large-scale application of EESP

    Airborne Transmission of a Serotype 4 Fowl Adenovirus in Chickens

    No full text
    Serotype 4 fowl adenovirus (FAdV-4) is the main pathogen for hydropericardium syndrome (HPS) in chickens. It has caused major economic losses in the global poultry industry. Currently, FAdV-4&prime;s transmission routes in chickens remain unclear. Here we investigate the airborne transmission routes of FAdV-4 in chickens. A total of 45 ten-day-old chickens were equally divided into three groups (infected group/isolator A, airborne group/isolator B, and control group/isolator C). Of note, isolators A and B were connected by a leak-free pipe. The results showed that the virus could form a viral aerosol, detected in isolators two days post infection (dpi). The viral aerosol reached a peak at 4 dpi in the infected group. Healthy chickens in the airborne group were infected by the virus at 8 dpi. The chickens of the airborne group demonstrated subclinical symptoms capable of shedding the virus for some time. This finding suggests that FAdV-4 can be efficiently transmitted among chickens by aerosol transmission. These findings have significant implications for developing strategies to control this infectious disease epidemic

    Using Zebrafish Animal Model to Study the Genetic Underpinning and Mechanism of Arrhythmogenic Cardiomyopathy

    No full text
    Arrhythmogenic cardiomyopathy (ACM) is largely an autosomal dominant genetic disorder manifesting fibrofatty infiltration and ventricular arrhythmia with predominantly right ventricular involvement. ACM is one of the major conditions associated with an increased risk of sudden cardiac death, most notably in young individuals and athletes. ACM has strong genetic determinants, and genetic variants in more than 25 genes have been identified to be associated with ACM, accounting for approximately 60% of ACM cases. Genetic studies of ACM in vertebrate animal models such as zebrafish (Danio rerio), which are highly amenable to large-scale genetic and drug screenings, offer unique opportunities to identify and functionally assess new genetic variants associated with ACM and to dissect the underlying molecular and cellular mechanisms at the whole-organism level. Here, we summarize key genes implicated in ACM. We discuss the use of zebrafish models, categorized according to gene manipulation approaches, such as gene knockdown, gene knock-out, transgenic overexpression, and CRISPR/Cas9-mediated knock-in, to study the genetic underpinning and mechanism of ACM. Information gained from genetic and pharmacogenomic studies in such animal models can not only increase our understanding of the pathophysiology of disease progression, but also guide disease diagnosis, prognosis, and the development of innovative therapeutic strategies

    Efficient Sorption and Removal of Perfluoroalkyl Acids (PFAAs) from Aqueous Solution by Metal Hydroxides Generated in Situ by Electrocoagulation

    No full text
    Removal of environmentally persistent perfluoroalkyl acids (PFAAs), that is, perfluorooctanesulfonate (PFOS) and perfluorocarboxylic acids (PFCAs, C<sub>4</sub> ∼ C<sub>10</sub>) were investigated through sorption on four metal hydroxide flocs generated in situ by electrocoagulation in deionized water with 10 mM NaCl as supporting electrolyte. The results indicated that the zinc hydroxide flocs yielded the highest removal efficiency with a wide range concentration of PFOA/PFOS (1.5 μM ∼ 0.5 mM) at the zinc dosage <150 mg L<sup>–1</sup> with the energy consumption <0.18 Wh L<sup>–1</sup>. The sorption kinetics indicated that the zinc hydroxide flocs had an equilibrium adsorbed amount (<i>q</i><sub>e</sub>) up to 5.74/7.69 mmol g<sup>–1</sup> (Zn) for PFOA/PFOS at the initial concentration of 0.5 mM with an initial sorption rate (<i>v</i><sub>0</sub>) of 1.01 × 10<sup>3</sup>/1.81 × 10<sup>3</sup> mmol g<sup>–1</sup> h<sup>–1</sup>. The sorption of PFOA/PFOS reached equilibrium within <10 min. The sorption mechanisms of PFAAs on the zinc hydroxide flocs were proposed based on the investigation of various driving forces. The results indicated that the hydrophobic interaction was primarily responsible for the PFAAs sorption. The electrocoagulation process with zinc anode may have a great potential for removing PFAAs from industrial wastewater as well as contaminated environmental waterbody

    Data_Sheet_1_TMT-based quantitative proteomics analysis reveals the role of Notch signaling in FAdV-4-infected LMH cell.doc

    No full text
    Fowl adenovirus serotype 4 (FAdV-4) is recognized as a pathogen that causes hydropericardium syndrome. Irrespective of the pathway used by the virus to invade the chicken, the pathological characteristics of the disease include degeneration and necrosis of hepatocytes, formation of intranuclear inclusions, as well as inflammatory cell infiltration. Liver dysfunction constitutes one of the critical factors leading to death. Therefore, it is vital to investigate the virus-mediated severe pathological liver damage to further understand the pathogenesis of FAdV-4. Here, proteomics, a tandem mass tag (TMT)-based approach to directly analyze protein expression, was used to determine the protein expression during FAdV-4 proliferation in leghorn male hepatoma (LMH) cells. We identified 177 differentially expressed proteins associated with various biological processes and pathways. The functional enrichment analysis revealed that FAdV-4 could downregulate some signaling pathways in LMH cells, including NOD-like receptor signaling, RIG-I-like receptor signaling, NF-κB signaling, TNF signaling pathway, and Notch signaling, FoxO signaling, PI3K-Akt signaling, and autophagy. The results of proteomics screening suggested an association between FAdV-4 infection and Notch signaling in LMH in vitro, indicating that Notch signaling regulated the expression of inflammatory cytokines and interferons but not viral replication in LMH cells. These data contributed to the understanding of the immunopathogenesis and inflammopathogenesis of FAdV-4 infection and also provided valuable information for the further analysis of the molecular mechanisms underlying viral pathogenesis.</p
    corecore