18 research outputs found

    Run-to-Run Control for Active Balancing of Lithium Iron Phosphate Battery Packs

    Get PDF
    \ua9 1986-2012 IEEE. Lithium iron phosphate battery packs are widely employed for energy storage in electrified vehicles and power grids. However, their flat voltage curves rendering the weakly observable state of charge are a critical stumbling block for charge equalization management. This paper focuses on the real-time active balancing of series-connected lithium iron phosphate batteries. In the absence of accurate in situ state information in the voltage plateau, a balancing current ratio (BCR) based algorithm is proposed for battery balancing. Then, BCR-based and voltage-based algorithms are fused, responsible for the balancing task within and beyond the voltage plateau, respectively. The balancing process is formulated as a batch-based run-to-run control problem, as the first time in the research area of battery management. The control algorithm acts in two timescales, including timewise control within each batch run and batchwise control at the end of each batch. Hardware-in-the-loop experiments demonstrate that the proposed balancing algorithm is able to release 97.1% of the theoretical capacity and can improve the capacity utilization by 5.7% from its benchmarking algorithm. Furthermore, the proposed algorithm can be coded in C language with the binary code in 118 328 bytes only and, thus, is readily implementable in real time

    Behavior data of battery and battery pack SOC estimation under different working conditions

    Get PDF
    This article provides the dataset of operating conditions of battery behavior. The constant current condition and the dynamic stress test (DST) condition were carried out to analyze the battery discharging and charging features. The datasets were achieved at room temperature, in April, 2016. The shared data contributes to clarify the battery pack state-of-charge (SOC) and the battery inconsistency, which is also shown in the article of “An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model” (X. Zhang, Y. Wang, D. Yang, et al., 2016) [1]

    A Finite-Time Differentiator with Application to Nuclear Reactor Inverse Period Measurement

    No full text
    The measurement of the growth rate, or the so-called inverse period, of a nuclear reactor is crucial for safety monitoring and control purposes. Due to the inevitable statistical fluctuation of neutron flux at low power-levels, it is difficult to precisely estimate the inverse period from the pulse counting data in the source range. Motivated by the equivalence of the measurement of inverse period and the differentiation of the logarithm of pulse count, a new differentiator is proposed, which is finite-time convergent with a bounded steady estimation error. The feasibility of this newly-built finite-time differentiator is verified by numerical simulation. Then, based on the pulse count data recorded during the startup of a test reactor, the differentiator is used to estimate the inverse period and its derivative, as well as the period and the reactivity of the reactor. The results show that the differentiator is capable of providing a satisfactory estimation of signal derivatives under strong noise

    Petrogenesis of the Newly Discovered Early Cretaceous Peralkaline Granitic Dikes in Baerzhe Area of Jarud Banner, Inner Mongolia: Implications for Deciphering Magma Evolution

    No full text
    The super-large Baerzhe Be–Nb–Zr–REE deposit in NE China is hosted in the Early Cretaceous peralkaline granites. In this work, the newly discovered granitic dikes developed around the Baerzhe deposit were studied for the first time, focusing on their genesis and genetic relationships with the Baerzhe peralkaline granites. Zircon U-Pb dating of these granitic rocks (including the granite porphyry, rhyolite and miarolitic granite) yielded Early Cretaceous ages of 125–121 Ma. Their mineral assemblages and geochemical features suggest that they share similar features with the peralkaline A-type granites. Their geochemical data and zircon Hf isotopic compositions (εHf(t) = +3.4 to +10.5) indicate that the peralkaline granitic rocks were formed by the partial melting of dehydrated charnockite with extensive plagioclase crystal fractionation, which resulted in a peralkaline affinity. There are two types of distinct zircons in the studied samples: the type I zircon with a bright rim and dark core, which may represent a cumulate mineral phase captured together with aggregates during eruption, and the type II zircon with a higher evolution degree crystallized in the residual melts. Combined with the simulation results using whole-rock trace elements, we proposed that the peralkaline granitic dikes represent more evolved interstitial melts than the Baerzhe granitic magma. In the Early Cretaceous extensional tectonic settings, mantle-derived magma upwelled, which induced the melting of the lower crust and prolonged the evolutionary process of the magma crystal mush

    Petrogenesis of the Newly Discovered Early Cretaceous Peralkaline Granitic Dikes in Baerzhe Area of Jarud Banner, Inner Mongolia: Implications for Deciphering Magma Evolution

    No full text
    The super-large Baerzhe Be–Nb–Zr–REE deposit in NE China is hosted in the Early Cretaceous peralkaline granites. In this work, the newly discovered granitic dikes developed around the Baerzhe deposit were studied for the first time, focusing on their genesis and genetic relationships with the Baerzhe peralkaline granites. Zircon U-Pb dating of these granitic rocks (including the granite porphyry, rhyolite and miarolitic granite) yielded Early Cretaceous ages of 125–121 Ma. Their mineral assemblages and geochemical features suggest that they share similar features with the peralkaline A-type granites. Their geochemical data and zircon Hf isotopic compositions (εHf(t) = +3.4 to +10.5) indicate that the peralkaline granitic rocks were formed by the partial melting of dehydrated charnockite with extensive plagioclase crystal fractionation, which resulted in a peralkaline affinity. There are two types of distinct zircons in the studied samples: the type I zircon with a bright rim and dark core, which may represent a cumulate mineral phase captured together with aggregates during eruption, and the type II zircon with a higher evolution degree crystallized in the residual melts. Combined with the simulation results using whole-rock trace elements, we proposed that the peralkaline granitic dikes represent more evolved interstitial melts than the Baerzhe granitic magma. In the Early Cretaceous extensional tectonic settings, mantle-derived magma upwelled, which induced the melting of the lower crust and prolonged the evolutionary process of the magma crystal mush

    Chronic exposure to tris(1,3-dichloro-2-propyl) phosphate: Effects on intestinal microbiota and serum metabolism in rats

    No full text
    Tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) is a widely used organophosphate ester that can adversely affect animal or human health. The intestinal microbiota is critical to human health. High-dose exposure to TDCIPP can markedly affect the intestinal ecosystem of mice, but the effects of long-term exposure to lower concentrations of TDCIPP on the intestinal flora and body metabolism remain unclear. In this study, TDCIPP was administered to Sprague–Dawley rats by gavage at a dose of 13.3 mg/kg bw/day for 90 days. TDCIPP increased the relative weight of the kidneys (P = 0.017), but had no effect on the relative weight of the heart, liver, spleen, lungs, testes, and ovaries (P > 0.05). 16 S rRNA gene sequencing revealed that long-term TDCIPP exposure affected the diversity, relative abundance, and functions of rat gut microbes. The serum metabolomics of the rats showed that TDCIPP can disrupt the serum metabolic profiles, result in the up-regulation of 26 metabolites and down-regulation of 3 metabolites, and affect multiple metabolic pathways in rat sera. In addition, the disturbed genera and metabolites were correlated. The functions of some disturbed gut microbes were consistent with the affected metabolic pathways in the sera, and these metabolic pathways were all associated with kidney disease, suggesting that TDCIPP may cause kidney injury in rats by affecting the intestinal flora and serum metabolism

    Analysis of the effects of Rosa roxburghii Tratt fruit polyphenols on immune function in mice through gut microbiota and metabolomics: An in vivo preclinical trial study

    No full text
    Various plant polyphenols have been recognized by researchers as functional foods to improve the immune system. Our study showd that Rosa roxburghii Tratt fruit polyphenols (RRTP) could regulate the cellular and innate immune functions of mice. In addition, Compared with the normal control group, RRTP could affecting the balance of lymphocyte subsets. Metabolism studies showed that RRTP altered 46 different metabolites, mainly involving amino acid metabolism, carbohydrate metabolism, and lipid metabolism. Moreover, RRTP has a positive regulatory effect on the gut microbiota, the short-chain fatty acids(SCFAs) producing bacterias: Blautia, Bacteroides, Lachnospiraceae_NK4A136_group, Roseburia increased notably. Measurements of SCFAs in the cecum showed significant increases, suggesting that the immunomodulatory effects of RRTP are closely related to SCFAs. In Conclusion, RRTP could regulate the immune system of mice by regulating the balance of metabolites and intestinal microorganisms, RRTP has the potential to be developed as functional ingredients or foods to promote health
    corecore