14 research outputs found

    Facile Synthesis of Graphene/Metal Nanoparticle Composites via Self-Catalysis Reduction at Room Temperature

    No full text
    Graphene/metal nanoparticle (NP) composites have attracted great interest for various applications as catalysts, electrodes, sensors, etc., due to their unique structures and extraordinary properties. A facile synthesis of graphene/metal NP composites with good control of size and morphology of metal NPs is critical to the practical applications. A simple method to synthesize graphene/metal NPs under a controllable manner via a self-catalysis reduction at room temperature has been developed in this paper. At first, metal NPs with desirable size and morphology were decorated on GO and then used as catalyst to accelerate the hydrolysis reaction of NaBH<sub>4</sub> to reduce the graphene oxide. Compared to the existing methods, the method reported here features several advantages in which graphene/metal NPs are prepared without using toxic and explosive reductant, such as hydrazine or its derivatives, making it environmentally benign, and the reaction can be processed at room temperature with high efficiency and in a large range of pH values. The approach has been demonstrated to successfully synthesize graphene composites with various metal NPs in large quantity, which opens up a novel and simple way to prepare large-scale graphene/metal or graphene/metal oxide composites under mild conditions for practical applications. For example, graphene/AuNP composites synthesized by the method show excellent catalytic capability

    X‑ray Insights into Formation of −O Functional Groups on MXenes: Two-Step Dehydrogenation of Adsorbed Water

    No full text
    Engineered MXene surfaces with more −O functional groups are feasible for realizing higher energy density due to their higher theoretical capacitance. However, there have been only a few explorations of this regulation mechanism. Investigating the formation source and mechanism is conducive to expanding the adjustment method from the top-down perspective. Herein, for the first time, the formation dynamics of −O functional groups on Mo2CTx are discovered as a two-step dehydrogenation of adsorbed water through in situ near-ambient-pressure X-ray photoelectron spectroscopy, further confirmed by ab initio molecular dynamics simulations. From this, the controllable substitution of −F functional groups with −O functional groups is achieved on Mo2CTx during electrochemical cycling in an aqueous electrolyte. The obtained Mo2CTx with rich −O groups exhibits a high capacitance of 163.2 F g –1 at 50 mV s –1, together with excellent stability. These results offer new insights toward engineering surface functional groups of MXenes for many specific applications

    X‑ray Insights into Formation of −O Functional Groups on MXenes: Two-Step Dehydrogenation of Adsorbed Water

    No full text
    Engineered MXene surfaces with more −O functional groups are feasible for realizing higher energy density due to their higher theoretical capacitance. However, there have been only a few explorations of this regulation mechanism. Investigating the formation source and mechanism is conducive to expanding the adjustment method from the top-down perspective. Herein, for the first time, the formation dynamics of −O functional groups on Mo2CTx are discovered as a two-step dehydrogenation of adsorbed water through in situ near-ambient-pressure X-ray photoelectron spectroscopy, further confirmed by ab initio molecular dynamics simulations. From this, the controllable substitution of −F functional groups with −O functional groups is achieved on Mo2CTx during electrochemical cycling in an aqueous electrolyte. The obtained Mo2CTx with rich −O groups exhibits a high capacitance of 163.2 F g –1 at 50 mV s –1, together with excellent stability. These results offer new insights toward engineering surface functional groups of MXenes for many specific applications

    Liquid-Metal-Based Super-Stretchable and Structure-Designable Triboelectric Nanogenerator for Wearable Electronics

    No full text
    The rapid advancement of intelligent wearable electronics imposes the emergent requirement for power sources that are deformable, compliant, and stretchable. Power sources with these characteristics are difficult and challenging to achieve. The use of liquid metals as electrodes may provide a viable strategy to produce such power sources. In this work, we propose a liquid-metal-based triboelectric nanogenerator (LM-TENG) by employing Galinstan as the electrode and silicone rubber as the triboelectric and encapsulation layer. The small Young’s modulus of the liquid metal ensures the electrode remains continuously conductive under deformations, stretching to a strain as large as ∼300%. The surface oxide layer of Galinstan effectively prevents the liquid Galinstan electrode from further oxidization and permeation into silicone rubber, yielding outstanding device stability. Operating in the single-electrode mode at 3 Hz, the LM-TENG with an area of 6 × 3 cm<sup>2</sup> produces an open-circuit voltage of 354.5 V, transferred short-circuit charge of 123.2 nC, short-circuit current of 15.6 μA, and average power density of 8.43 mW/m<sup>2</sup>, which represent outstanding performance values for TENGs. Further, the LM-TENG maintains stable performance under various deformations, such as stretching, folding, and twisting. LM-TENGs in different forms, such as bulk-shaped, bracelet-like, and textile-like, are all able to harvest mechanical energy from human walking, arm shaking, or hand patting to sustainably drive wearable electronic devices

    Monolayer Thiol Engineered Covalent Interface toward Stable Zinc Metal Anode

    No full text
    Interface engineering of zinc metal anodes is a promising remedy to relieve their inferior stability caused by dendrite growth and side reactions. Nevertheless, the low affinity and additional weight of the protective coating remain obstacles to their further implementation. Here, aroused by DFT simulation, self-assembled monolayers (SAMs) are selectively constructed to enhance the stability of zinc metal anodes in dilute aqueous electrolytes. It is found that the monolayer thiol molecules relatively prefer to selectively graft onto the unstable zinc crystal facets through strong Zn–S chemical interactions to engineer a covalent interface, enabling the uniform deposition of Zn2+ onto (002) crystal facets. Therefore, dendrite-free anodes with suppressed side reactions can be achieved, proven by in situ optical visualization and differential electrochemical mass spectrometry (DEMS). In particular, the thiol endows the symmetric cells with a 4000 h ultrastable plating/stripping at a specific current density of 1.0 mA cm–2, much superior to those of bare zinc anodes. Additionally, the full battery of modified anodes enables stable cycling of 87.2% capacity retention after 3300 cycles. By selectively capping unstable crystal facets with inert molecules, this work provides a promising design strategy at the molecular level for stable metal anodes

    Liquid-Metal-Based Super-Stretchable and Structure-Designable Triboelectric Nanogenerator for Wearable Electronics

    No full text
    The rapid advancement of intelligent wearable electronics imposes the emergent requirement for power sources that are deformable, compliant, and stretchable. Power sources with these characteristics are difficult and challenging to achieve. The use of liquid metals as electrodes may provide a viable strategy to produce such power sources. In this work, we propose a liquid-metal-based triboelectric nanogenerator (LM-TENG) by employing Galinstan as the electrode and silicone rubber as the triboelectric and encapsulation layer. The small Young’s modulus of the liquid metal ensures the electrode remains continuously conductive under deformations, stretching to a strain as large as ∼300%. The surface oxide layer of Galinstan effectively prevents the liquid Galinstan electrode from further oxidization and permeation into silicone rubber, yielding outstanding device stability. Operating in the single-electrode mode at 3 Hz, the LM-TENG with an area of 6 × 3 cm<sup>2</sup> produces an open-circuit voltage of 354.5 V, transferred short-circuit charge of 123.2 nC, short-circuit current of 15.6 μA, and average power density of 8.43 mW/m<sup>2</sup>, which represent outstanding performance values for TENGs. Further, the LM-TENG maintains stable performance under various deformations, such as stretching, folding, and twisting. LM-TENGs in different forms, such as bulk-shaped, bracelet-like, and textile-like, are all able to harvest mechanical energy from human walking, arm shaking, or hand patting to sustainably drive wearable electronic devices

    Liquid-Metal-Based Super-Stretchable and Structure-Designable Triboelectric Nanogenerator for Wearable Electronics

    No full text
    The rapid advancement of intelligent wearable electronics imposes the emergent requirement for power sources that are deformable, compliant, and stretchable. Power sources with these characteristics are difficult and challenging to achieve. The use of liquid metals as electrodes may provide a viable strategy to produce such power sources. In this work, we propose a liquid-metal-based triboelectric nanogenerator (LM-TENG) by employing Galinstan as the electrode and silicone rubber as the triboelectric and encapsulation layer. The small Young’s modulus of the liquid metal ensures the electrode remains continuously conductive under deformations, stretching to a strain as large as ∼300%. The surface oxide layer of Galinstan effectively prevents the liquid Galinstan electrode from further oxidization and permeation into silicone rubber, yielding outstanding device stability. Operating in the single-electrode mode at 3 Hz, the LM-TENG with an area of 6 × 3 cm<sup>2</sup> produces an open-circuit voltage of 354.5 V, transferred short-circuit charge of 123.2 nC, short-circuit current of 15.6 μA, and average power density of 8.43 mW/m<sup>2</sup>, which represent outstanding performance values for TENGs. Further, the LM-TENG maintains stable performance under various deformations, such as stretching, folding, and twisting. LM-TENGs in different forms, such as bulk-shaped, bracelet-like, and textile-like, are all able to harvest mechanical energy from human walking, arm shaking, or hand patting to sustainably drive wearable electronic devices

    Liquid-Metal-Based Super-Stretchable and Structure-Designable Triboelectric Nanogenerator for Wearable Electronics

    No full text
    The rapid advancement of intelligent wearable electronics imposes the emergent requirement for power sources that are deformable, compliant, and stretchable. Power sources with these characteristics are difficult and challenging to achieve. The use of liquid metals as electrodes may provide a viable strategy to produce such power sources. In this work, we propose a liquid-metal-based triboelectric nanogenerator (LM-TENG) by employing Galinstan as the electrode and silicone rubber as the triboelectric and encapsulation layer. The small Young’s modulus of the liquid metal ensures the electrode remains continuously conductive under deformations, stretching to a strain as large as ∼300%. The surface oxide layer of Galinstan effectively prevents the liquid Galinstan electrode from further oxidization and permeation into silicone rubber, yielding outstanding device stability. Operating in the single-electrode mode at 3 Hz, the LM-TENG with an area of 6 × 3 cm<sup>2</sup> produces an open-circuit voltage of 354.5 V, transferred short-circuit charge of 123.2 nC, short-circuit current of 15.6 μA, and average power density of 8.43 mW/m<sup>2</sup>, which represent outstanding performance values for TENGs. Further, the LM-TENG maintains stable performance under various deformations, such as stretching, folding, and twisting. LM-TENGs in different forms, such as bulk-shaped, bracelet-like, and textile-like, are all able to harvest mechanical energy from human walking, arm shaking, or hand patting to sustainably drive wearable electronic devices

    Liquid-Metal-Based Super-Stretchable and Structure-Designable Triboelectric Nanogenerator for Wearable Electronics

    No full text
    The rapid advancement of intelligent wearable electronics imposes the emergent requirement for power sources that are deformable, compliant, and stretchable. Power sources with these characteristics are difficult and challenging to achieve. The use of liquid metals as electrodes may provide a viable strategy to produce such power sources. In this work, we propose a liquid-metal-based triboelectric nanogenerator (LM-TENG) by employing Galinstan as the electrode and silicone rubber as the triboelectric and encapsulation layer. The small Young’s modulus of the liquid metal ensures the electrode remains continuously conductive under deformations, stretching to a strain as large as ∼300%. The surface oxide layer of Galinstan effectively prevents the liquid Galinstan electrode from further oxidization and permeation into silicone rubber, yielding outstanding device stability. Operating in the single-electrode mode at 3 Hz, the LM-TENG with an area of 6 × 3 cm<sup>2</sup> produces an open-circuit voltage of 354.5 V, transferred short-circuit charge of 123.2 nC, short-circuit current of 15.6 μA, and average power density of 8.43 mW/m<sup>2</sup>, which represent outstanding performance values for TENGs. Further, the LM-TENG maintains stable performance under various deformations, such as stretching, folding, and twisting. LM-TENGs in different forms, such as bulk-shaped, bracelet-like, and textile-like, are all able to harvest mechanical energy from human walking, arm shaking, or hand patting to sustainably drive wearable electronic devices

    Liquid-Metal-Based Super-Stretchable and Structure-Designable Triboelectric Nanogenerator for Wearable Electronics

    No full text
    The rapid advancement of intelligent wearable electronics imposes the emergent requirement for power sources that are deformable, compliant, and stretchable. Power sources with these characteristics are difficult and challenging to achieve. The use of liquid metals as electrodes may provide a viable strategy to produce such power sources. In this work, we propose a liquid-metal-based triboelectric nanogenerator (LM-TENG) by employing Galinstan as the electrode and silicone rubber as the triboelectric and encapsulation layer. The small Young’s modulus of the liquid metal ensures the electrode remains continuously conductive under deformations, stretching to a strain as large as ∼300%. The surface oxide layer of Galinstan effectively prevents the liquid Galinstan electrode from further oxidization and permeation into silicone rubber, yielding outstanding device stability. Operating in the single-electrode mode at 3 Hz, the LM-TENG with an area of 6 × 3 cm<sup>2</sup> produces an open-circuit voltage of 354.5 V, transferred short-circuit charge of 123.2 nC, short-circuit current of 15.6 μA, and average power density of 8.43 mW/m<sup>2</sup>, which represent outstanding performance values for TENGs. Further, the LM-TENG maintains stable performance under various deformations, such as stretching, folding, and twisting. LM-TENGs in different forms, such as bulk-shaped, bracelet-like, and textile-like, are all able to harvest mechanical energy from human walking, arm shaking, or hand patting to sustainably drive wearable electronic devices
    corecore