15 research outputs found

    Prospective intervention study with a microarray-based, multiplexed, automated molecular diagnosis instrument (Verigene system) for the rapid diagnosis of bloodstream infections, and its impact on the clinical outcomes

    Get PDF
    The Verigene Gram-positive blood culture test (BC-GP) and the Verigene Gram-negative blood culture test (BC-GN) identify representative Gram-positive bacteria, Gram-negative bacteria and their antimicrobial resistance by detecting resistance genes within 3 h. Significant benefits are anticipated due to their rapidity and accuracy, however, their clinical utility is unproven in clinical studies. We performed a clinical trial between July 2014 and December 2014 for hospitalized bacteremia patients. During the intervention period (N = 88), Verigene BC-GP and BC-GN was used along with conventional microbiological diagnostic methods, while comparing the clinical data and outcomes with those during the control period (N = 147) (UMIN registration ID: UMIN000014399). The median duration between the initiation of blood culture incubation and the reporting time of the Verigene system results was 21.7 h (IQR 18.2-26.8) and the results were found in 88% of the cases by the next day after blood cultures were obtained without discordance. The hospital-onset infection rate was higher in the control period (24% vs. 44%, p = 0.002), however, no differences were seen in co-morbidities and severity between the control and intervention periods. During the intervention period, the time of appropriate antimicrobial agents\u27 initiation was significantly earlier than that in the control period (p = 0.001) and most cases (90%; 79/88) were treated with antimicrobial agents with in-vitro susceptibility for causative bacteria the day after the blood culture was obtained. The costs for antimicrobial agents were lower in the intervention period (3618 yen vs. 8505 yen, p = 0.001). The 30-day mortality was lower in the intervention period (3% vs. 13%, p = 0.019)

    A young patient with atypical type-B Wolff–Parkinson–White syndrome accompanied by left ventricular dysfunction

    Get PDF
    AbstractA 15-year-old asymptomatic male patient presented with an electrocardiographic abnormality and left ventricular (LV) dysfunction (left ventricle ejection fraction of 40%) in a physical examination performed 2 years previously. LV dysfunction did not improve despite optimal medical therapy for dilated cardiomyopathy. Twelve-lead electrocardiography revealed a normal PR interval (138ms) with a small delta-like wave in V2, but not a typical diagnostic wave that could be diagnosed as Wolff–Parkinson–White (WPW) syndrome by an electrocardiogram auto-analysis. Transthoracic echocardiography showed a remarkable asynchronous septal motion. An electrophysiological study was performed to exclude WPW syndrome. An accessory pathway (AP) was revealed on the lateral wall of the right ventricle, and radiofrequency catheter ablation was successfully performed to disconnect the AP. Thereafter, the dyssynchrony disappeared, and LV function improved. The intrinsic atrioventricular nodal conduction was very slow (A-H, 237ms). The results of electrocardiogram auto-analysis could not be used to confirm the diagnosis of WPW syndrome because of the atypical delta wave. Conduction via the right lateral AP caused electrical dyssynchrony in the LV. This case suggests that atypical delta waves should be evaluated without depending on electrocardiographic auto-analyses in patients with LV dysfunction accompanied by dyssynchrony

    A young patient with atypical type-B Wolff–Parkinson–White syndrome accompanied by left ventricular dysfunction

    No full text
    A 15-year-old asymptomatic male patient presented with an electrocardiographic abnormality and left ventricular (LV) dysfunction (left ventricle ejection fraction of 40%) in a physical examination performed 2 years previously. LV dysfunction did not improve despite optimal medical therapy for dilated cardiomyopathy. Twelve-lead electrocardiography revealed a normal PR interval (138 ms) with a small delta-like wave in V2, but not a typical diagnostic wave that could be diagnosed as Wolff–Parkinson–White (WPW) syndrome by an electrocardiogram auto-analysis. Transthoracic echocardiography showed a remarkable asynchronous septal motion. An electrophysiological study was performed to exclude WPW syndrome. An accessory pathway (AP) was revealed on the lateral wall of the right ventricle, and radiofrequency catheter ablation was successfully performed to disconnect the AP. Thereafter, the dyssynchrony disappeared, and LV function improved. The intrinsic atrioventricular nodal conduction was very slow (A-H, 237 ms). The results of electrocardiogram auto-analysis could not be used to confirm the diagnosis of WPW syndrome because of the atypical delta wave. Conduction via the right lateral AP caused electrical dyssynchrony in the LV. This case suggests that atypical delta waves should be evaluated without depending on electrocardiographic auto-analyses in patients with LV dysfunction accompanied by dyssynchrony

    Studies of the Confinement and the Toroidal Current Control in Heliotron J

    No full text
    The plasma confinement properties of Heliotron J plasmas and the toroidal current are investigated. A plasma energy of 2.5 kJ has been achieved by 70 GHz-0.35 MW electron cyclotron heating (ECH). The energy confinement time is within the expected values as determined by the stellarator scaling law. In the high density region, however, better confinement plasmas are observed. The transition phenomena characterized by Hα signal drop are sometimes observed in such a region. The toroidal current generally affects plasma confinement since it generates a poloidal magnetic field. From this point of view, toroidal current control is studied in terms of field-component variation and electron cyclotron current drive. The zero current condition is found in the inner vertical field scan. Current control using the electron cyclotron wave is also demonstrated
    corecore