13 research outputs found

    An epidemiological study on anemia among institutionalized people with intellectual and/or motor disability with special reference to its frequency, severity and predictors

    Get PDF
    BACKGROUND: To examine the type, frequency, severity, and predictors of anemia and its relationship with co-morbid conditions among institutionalized people with intellectual and/or motor disability. METHODS: We conducted a cross-sectional study at a public facility for people with intellectual and/or motor disability in Ibaraki prefecture, Japan. Health checkup data obtained in 2001 from 477 people with intellectual disability (male: 286, average age 40.6 ± 12.3; female: 191, average age 45.1 ± 11.6) were retrospectively reviewed. RESULTS: The prevalence of anemia among male participants was higher than in female participants for each disability category (intellectual disability, 41.1%, 4.2%; cerebral palsy, 37.5%, 4.8%; Down's syndrome, 15.0%, 0%; severe motor and intellectual disabilities, 61.9%, 16.7%). Most participants with anemia (93.8 – 100%) showed a normocytic normochromic anemia pattern. Multivariate analysis revealed that factors related to an increase in frequency included sex (male), low body mass index (BMI), use of anticonvulsants or major tranquilizers, and a high zinc sulfate turbidity test (ZTT) value. No clinically diagnosed co-morbid condition was found to be related to the presence of anemia. CONCLUSION: A high frequency of mild normocytic normochromic anemia in institutionalized people with intellectual and/or motor disability was observed, particularly among males. Medications and chronic inflammation may increase the risk of anemia

    DOCK2 is involved in the host genetics and biology of severe COVID-19

    Get PDF
    「コロナ制圧タスクフォース」COVID-19疾患感受性遺伝子DOCK2の重症化機序を解明 --アジア最大のバイオレポジトリーでCOVID-19の治療標的を発見--. 京都大学プレスリリース. 2022-08-10.Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge. Here we conducted a genome-wide association study (GWAS) involving 2, 393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3, 289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection

    DOK7 gene therapy enhances motor activity and life span in ALS model mice

    No full text
    Abstract Amyotrophic lateral sclerosis (ALS) is a progressive, multifactorial motor neurodegenerative disease with severe muscle atrophy. The glutamate release inhibitor riluzole is the only medication approved by the FDA, and prolongs patient life span by a few months, testifying to a strong need for new treatment strategies. In ALS, motor neuron degeneration first becomes evident at the motor nerve terminals in neuromuscular junctions (NMJs), the cholinergic synapse between motor neuron and skeletal muscle; degeneration then progresses proximally, implicating the NMJ as a therapeutic target. We previously demonstrated that activation of muscle‐specific kinase MuSK by the cytoplasmic protein Dok‐7 is essential for NMJ formation, and forced expression of Dok‐7 in muscle activates MuSK and enlarges NMJs. Here, we show that therapeutic administration of an adeno‐associated virus vector encoding the human DOK7 gene suppressed motor nerve terminal degeneration at NMJs together with muscle atrophy in the SOD1‐G93A ALS mouse model. Ultimately, we show that DOK7 gene therapy enhanced motor activity and life span in ALS model mice
    corecore