652 research outputs found

    Mineral Dissolution/Precipitation During CO2 Injection into Coal Reservoir: A Laboratory Study

    Get PDF
    AbstractCO2 Supercritical Fluid Extraction (SFE) has been performed on Kushiro coal. The results showed there were slightly changes in major metal oxide due to mineral dissolution/precipitation during CO2 injection. To predict mineral dissolution/precipitation in the field scale and for long geologic period of time, numerical simulations using GMG-GEM simulator were carried out. The numerical simulation was only focused on the calcite that showed to dissolve in the near injection well area (higher pressure) as well as to precipitate at some distance from the injection well when injection of CO2 was stopped

    NUMERICAL MODELLING AND SIMULATION OF CO2 –ENHANCED COAL-BED METHANE RECOVERY (CO2-ECBMR): THE EFFECT OF COAL SWELLING ON GAS PRODUCTION PERFORMANCE

    Get PDF
    This presents study investigate the effect of swelling on gas production performances at coal reservoirs during CO2-ECBMR processes. The stressdependent permeability-models to express effect of coal matrix shrinkage/swelling using Palmer and Mansoori (P&M) and Shi and Durucan (S&D) models were constructed based on present experimental results for typical coal reservoirs with the distance of 400 to 800 m between injection and production wells. By applying the P&M and S&D models, the numerical simulation results showed that CH4 production rate was decreasing and peak production time was delayed due to effect of stress and permeability changes caused by coal matrix swelling. The total CH4 production ratio of swelling effect/no-swelling was simulated as 0.18 to 0.95 for permeability 1 to 100 mD, respectively. It has been cleared that swelling affects gas production at permeability 1 to 15 mD, however, it can be negligible at permeability over 15 mD

    Measurement of thermal conductivity in soils and application of de Vries model

    Get PDF
    Thermal conductivity of soil samples were measured using a twin transient-state cylindrical-probe method. The system of measurement consists of DC power supply, data logger, personal computer, 100cc soil sample, reference material sample, and two heat probes. The typical results were as follows: (1) Thermal conductivity of soils increased according to an increase of soil water content. (2) The thermal conductivity of Toyoura sand was larger than one of Kuroboku soil. (3) The thermal conductivity estimated by de Vries model had good agreement with the measured value

    Minimal upstream open reading frame of Per2 mediates phase fitness of the circadian clock to day/night physiological body temperature rhythm

    Get PDF
    全身の体内リズムを調和させるRNA配列の発見 --体温の日内変化に合わせてしなやかに調和させる--. 京都大学プレスリリース. 2023-03-07.Body temperature in homeothermic animals does not remain constant but displays a regular circadian fluctuation within a physiological range (e.g., 35°C–38.5°C in mice), constituting a fundamental systemic signal to harmonize circadian clock-regulated physiology. Here, we find the minimal upstream open reading frame (uORF) encoded by the 5′ UTR of the mammalian core clock gene Per2 and reveal its role as a regulatory module for temperature-dependent circadian clock entrainment. A temperature shift within the physiological range does not affect transcription but instead increases translation of Per2 through its minimal uORF. Genetic ablation of the Per2 minimal uORF and inhibition of phosphoinositide-3-kinase, lying upstream of temperature-dependent Per2 protein synthesis, perturb the entrainment of cells to simulated body temperature cycles. At the organismal level, Per2 minimal uORF mutant skin shows delayed wound healing, indicating that uORF-mediated Per2 modulation is crucial for optimal tissue homeostasis. Combined with transcriptional regulation, Per2 minimal uORF-mediated translation may enhance the fitness of circadian physiology

    Spatial variability in recruitment of benthos near drilling sites in the Iheya North hydrothermal field in the Okinawa Trough

    Get PDF
    Due to increasing anthropogenic impacts on deep-sea hydrothermal vent ecosystems, it is essential to understand population structure and maintenance through larval recruitment and recovery of vent faunas after disturbances. In this study, we quantified vent animal recruitment in the Okinawa Trough, in the western Pacific Ocean. This is the first study to investigate recruitment patterns at a man-made hydrothermal vent. Colonization plates were deployed at three sites. Site 1 manifested new hydrothermal shimmering with small chimneys, white bacterial mats, and some alvinocaridid shrimp that arrived after drilling. Site 2 showed no evidence of newly arrived foundation species after drilling, and Site 3 had pre-existing animal communities in the vicinity of the new vent. Twenty-two months after deployment, colonization plates were retrieved and recruited animals were inventoried. Species composition and abundance differed among sites, but relatively high similarity in species composition was observed at Sites 1 and 3, though not at Site 2. Newly established communities on the plates at Sites 1 and 2 (no pre-existing fauna) showed lower species richness and abundance than at Site 3. Differences in abundance and size-frequency distributions of major recruits on the plates (i.e. Lepetodrilus mix, Bathymodiolus spp.) suggest the importance of reproductive and early life-history characteristics in spatial variability of recruitment. Lepetodrilus mix populations established on the plates at Site 1 showed high genetic connectivity. These results illustrate the importance of localized recruitment, which may have a significant impact on sustainability of vent faunal populations, despite the existence of regional metapopulations

    帝国拡大の力学 : 日本外交1894-1922

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 苅部 直, 東京大学教授 森 肇志, 東京大学教授 五百旗頭 薫, 東京大学教授 中川 淳司, 東京大学教授 平野 聡University of Tokyo(東京大学
    corecore