24,502 research outputs found
Lower Bounds on Query Complexity for Testing Bounded-Degree CSPs
In this paper, we consider lower bounds on the query complexity for testing
CSPs in the bounded-degree model.
First, for any ``symmetric'' predicate except \equ
where , we show that every (randomized) algorithm that distinguishes
satisfiable instances of CSP(P) from instances -far
from satisfiability requires queries where is the
number of variables and is a constant that depends on and
. This breaks a natural lower bound , which is
obtained by the birthday paradox. We also show that every one-sided error
tester requires queries for such . These results are hereditary
in the sense that the same results hold for any predicate such that
. For EQU, we give a one-sided error tester
whose query complexity is . Also, for 2-XOR (or,
equivalently E2LIN2), we show an lower bound for
distinguishing instances between -close to and -far
from satisfiability.
Next, for the general k-CSP over the binary domain, we show that every
algorithm that distinguishes satisfiable instances from instances
-far from satisfiability requires queries. The
matching NP-hardness is not known, even assuming the Unique Games Conjecture or
the -to- Conjecture. As a corollary, for Maximum Independent Set on
graphs with vertices and a degree bound , we show that every
approximation algorithm within a factor d/\poly\log d and an additive error
of requires queries. Previously, only super-constant
lower bounds were known
Optimal Constant-Time Approximation Algorithms and (Unconditional) Inapproximability Results for Every Bounded-Degree CSP
Raghavendra (STOC 2008) gave an elegant and surprising result: if Khot's
Unique Games Conjecture (STOC 2002) is true, then for every constraint
satisfaction problem (CSP), the best approximation ratio is attained by a
certain simple semidefinite programming and a rounding scheme for it. In this
paper, we show that similar results hold for constant-time approximation
algorithms in the bounded-degree model. Specifically, we present the
followings: (i) For every CSP, we construct an oracle that serves an access, in
constant time, to a nearly optimal solution to a basic LP relaxation of the
CSP. (ii) Using the oracle, we give a constant-time rounding scheme that
achieves an approximation ratio coincident with the integrality gap of the
basic LP. (iii) Finally, we give a generic conversion from integrality gaps of
basic LPs to hardness results. All of those results are \textit{unconditional}.
Therefore, for every bounded-degree CSP, we give the best constant-time
approximation algorithm among all. A CSP instance is called -far from
satisfiability if we must remove at least an -fraction of constraints
to make it satisfiable. A CSP is called testable if there is a constant-time
algorithm that distinguishes satisfiable instances from -far
instances with probability at least . Using the results above, we also
derive, under a technical assumption, an equivalent condition under which a CSP
is testable in the bounded-degree model
- …