95 research outputs found

    Functionalized layered double hydroxide nanoparticles as an intelligent nanoplatform for synergistic photothermal therapy and chemotherapy of tumors

    Get PDF
    In this work, a novel layered double hydroxide (LDH)-based multifunctional nanoplatform was built for synergistic temperature photothermal therapy (PTT)/chemotherapy. The platform was modified using the peptide B3int to target cancer cells with overexpression of integrin Ī±vĪ²3. Indocyanine green (ICG) and doxorubicin (DOX) were loaded into the nanocarrier (LDH-PEG-B3int NPs) to form a system having a high DOX drug loading (18.62%) and a remarkable photothermal conversion efficiency of 25.38%. It also showed pH-responsive and near-infrared (NIR)-triggered DOX release. In vitro and in vivo studies indicated that the anti-tumor activity of the combined delivery system was significantly higher than that of a single delivery system. This co-delivery nanosystem may be helpful for future application in the clinical treatment of cancer

    A vulnerability assessment of urban emergency in schools of Shanghai

    Get PDF
    Schools and students are particularly vulnerable to natural hazards, especially pluvial flooding in cities. This paper presents a scenario-based study that assesses the school vulnerability of emergency services (i.e., Emergency Medical Service and Fire & Rescue Service) to urban pluvial flooding in the city center of Shanghai, China through the combination of flood hazard analysis and GIS-based accessibility mapping. Emergency coverages and response times in various traffic conditions are quantified to generate school vulnerability under normal no-flood and 100-y pluvial flood scenarios. The findings indicate that severe pluvial flooding could lead to proportionate and linear impacts on emergency response provision to schools in the city. Only 11% of all the schools is predicted to be completely unreachable (very high vulnerability) during flood emergency but the majority of the schools would experience significant delay in the travel times of emergency responses. In this case, appropriate adaptations need to be particularly targeted for specific hot-spot areas (e.g., new urbanized zones) and crunch times (e.g., rush hours)

    Cu^{2+}-Chelating Mesoporous Silica Nanoparticles for Synergistic Chemotherapy/Chemodynamic Therapy

    Get PDF
    In this study, a pH-responsive controlled-release mesoporous silica nanoparticle (MSN) formulation was developed. The MSNs were functionalized with a histidine (His)-tagged targeting peptide (B3int) through an amide bond, and loaded with an anticancer drug (cisplatin (CP)) and a lysosomal destabilization mediator (chloroquine (CQ)). Cu2+ was then used to seal the pores of the MSNs via chelation with the His-tag. The resultant nanoparticles showed pH-responsive drug release, and could effectively target tumor cells via the targeting effect of B3int. The presence of CP and Cu2+ permits reactive oxygen species to be generated inside cells; thus, the chemotherapeutic effect of CP is augmented by chemodynamic therapy. In vitro and in vivo experiments showed that the nanoparticles are able to effectively kill tumor cells. An in vivo cancer model revealed that the nanoparticles increase apoptosis in tumor cells, and thereby diminish the tumor volume. No off-target toxicity was noted. It thus appears that the functionalized MSNs developed in this work have great potential for targeted, synergistic anticancer therapies

    Effects of the TLR4/Myd88/NF-ĪŗB Signaling Pathway on NLRP3 Inflammasome in Coronary Microembolization-Induced Myocardial Injury

    Get PDF
    Background/Aims: Coronary microembolization (CME) is a common complication of acute coronary syndrome (ACS) and percutaneous coronary intervention (PCI); Myocardial inflammation, caused by CME, is the main cause of cardiac injury. TLR4/MyD88/NF-ĪŗB signaling plays an important role in the development of myocardial inflammation, but its effects on CME remain unclear. To assess the cardiac protective effects of TAK-242 (TLR4 specific inhibitor) on CME-induced myocardial injury, and explore the underlying mechanism. Methods: Cardiac function, serum c-troponin I level, microinfarct were examined by cardiac ultrasound, myocardial enzyme assessment, HBFP staining. The levels of TLR4/MyD88/NF-ĪŗB signaling and NLRP3 inflammasome pathway were detected by ELISA, qRT-PCR and western blot. Results: The results showed inflammatory responses in the myocardium after CME, with increased expression levels of pro-inflammatory factors TNF-Ī±, IL-1Ī² and IL-18. Meanwhile, TLR4/MyD88/NF-ĪŗB signaling and the NLRP3 inflammasome were involved in the inflammatory process. TAK-242 administration before CME effectively inhibited the inflammatory response in the rat myocardium after CME and reduced myocardial injury, mainly by inhibiting TLR4/ MyD88/NF-ĪŗB signaling and reducing NLRP3 inflammasome activation. In addition, in vitro assays with neonatal rat cardiomyocytes further confirmed that TLR4/MyD88/NF-ĪŗB signaling was significantly activated in the inflammatory response of LPS-induced cardiomyocytes, via activation of the NLRP3 inflammasome. Inhibition of TLR4/MyD88/NF-ĪŗB signaling resulted in increased survival of cardiomyocytes mainly by reducing the release of inflammatory cytokines and decreasing NLRP3 inflammasome activation. Conclusions: TLR4/MyD88/NF-ĪŗB signaling participates in the inflammatory response of the myocardium after CME, activating the NLRP3 inflammasome, promoting the inflammatory cascade, and aggravating myocardial injury. Blocking TLR4/MyD88/NF-ĪŗB signaling may help reduce myocardial injury and improve cardiac function after CME

    Research Progress of Bio-based Biodegradable Antibacterial Food Packaging Films

    Get PDF
    As the first barrier for food against pollution, food packaging plays a crucial role in food production, which greatly impacts both the quality and safety of food. Recently, the increasing use of conventional plastic packaging has posed a significant threat to the environment. Meanwhile, cases of foodborne poisoning caused by microbial contamination emerge endlessly. On this background, biodegradable antimicrobial film prepared with natural biological materials has a broad application in future food packaging materials. This article reviews the research progress of biodegradable and antimicrobial films based on biological materials (polysaccharides, proteins, and lipids) and their application in food packaging. And introduces the application of different antimicrobial agents (Synthetic and natural antimicrobial agents) in antimicrobial films. Moreover, discusses the effect of the addition of antibacterial agents on the properties of packing and the antibacterial activities of films. Finally, the shortcomings of food packaging-related fields are discussed. The development of biodegradable antimicrobial food packaging films in the future is prospected

    Superconductivity and orbital-selective nematic order in a new titanium-based kagome metal CsTi3Bi5

    Full text link
    Fabrication of new types of superconductors with novel physical properties has always been a major thread in the research of superconducting materials. An example is the enormous interests generated by the cascade of correlated topological quantum states in the newly discovered vanadium-based kagome superconductors AV3Sb5 (A=K, Rb, and Cs) with a Z2 topological band structure. Here we report the successful fabrication of single-crystals of titanium-based kagome metal CsTi3Bi5 and the observation of superconductivity and electronic nematicity. The onset of the superconducting transition temperature Tc is around 4.8 K. In sharp contrast to the charge density wave superconductor AV3Sb5, we find that the kagome superconductor CsTi3Bi5 preserves translation symmetry, but breaks rotational symmetry and exhibits an electronic nematicity. The angular-dependent magnetoresistivity shows a remarkable two-fold rotational symmetry as the magnetic field rotates in the kagome plane. The scanning tunneling microscopy and spectroscopic imaging detect rotational-symmetry breaking C2 quasiparticle interference patterns (QPI) at low energies, providing further microscopic evidence for electronic nematicity. Combined with first-principle calculations, we find that the nematic QPI is orbital-selective and dominated by the Ti dxz and dyz orbitals, possibly originating from the intriguing orbital bond nematic order. Our findings in the new "135" material CsTi3Bi5 provide new directions for exploring the multi-orbital correlation effect and the role of orbital or bond order in the electron liquid crystal phases evidenced by the symmetry breaking states in kagome superconductors

    Molecular structure of the largemouth bass (Micropterus salmoides) Myf5 gene and its effect on skeletal muscle growth

    Get PDF
    Myogenic Regulatory Factors (MRFs), a family of basic helix-loop-helix (bHLH) transcription factors, play important roles in regulating skeletal muscle development and growth. Myf5, the primary factor of MRFs, initiates myogenesis. Its expression pattern during somitomyogenesis in some fish has been revealed. To further study its effect on fish muscle during postembryonic growth, characterization and function analysis of myf5 cDNA were carried out in largemouth bass. The 1,093Ā bp cDNA sequence was identified by RT-PCR and 3ā€²RACE, then the ORF of Myf5 cDNA was cloned into the expression vector pcDNA3.1(āˆ’)/mycHisB. The recombinant plasmid pcDNA3.1(āˆ’)/mycHisB-Myf5 was injected into the dorsal muscle of tilapias. RT-PCR and histochemical results showed that the exogenous gene was transcribed and translated inĀ vivo. Its effect on muscle growth focused on myofiber hypertrophy in white muscle 60Ā days post injection. This indicated that overexpression of Myf5 can promote myogenesis during the fish muscle postembryonic growth period
    • ā€¦
    corecore