11 research outputs found
Organ/tissue weights and nutrient-related biochemical parameters in plasma.
Organ/tissue weights and nutrient-related biochemical parameters in plasma.</p
Raw data of Table 2.
Exposure to a novel environment is psychologically and physically stressful for humans and animals. The response has been reported to involve enhanced sympathetic nervous system activity, but changes in nutrient levels under stress are not fully understood. As a form of exposure to a novel environment, repeated cage exchange (CE, four times at 2-h intervals for 8 h from 08:00 h) during the light phase with no restraint on movement was applied to A/J mice, a strain particularly prone to stress. Body temperature was measured with a temperature-sensing microchip implanted in the interscapular region. The stress conditions and anxiety level were evaluated by measuring urinary catecholamines and corticosterone and by performing an anxiety-like behavior test, respectively. Major nutrients such as glucose, fatty acids, and amino acids in the plasma were also examined. CE mice showed a significant increase in body temperature with each CE. They also showed a significantly greater reduction of body weight change, more water intake, and higher levels of urinary catecholamines and corticosterone and anxiety-like behavior score than control mice. The model revealed a significantly lower plasma glucose level and higher levels of several essential amino acids, such as branched-chain amino acids and phenylalanine, than those of control mice. Meanwhile, free fatty acids and several amino acids such as arginine, aspartic acid, proline, threonine, and tryptophan in both sets of mice were significantly decreased from the corresponding levels at 08:00 h, while similar plasma levels were exhibited between mice with and without CE. In conclusion, repeated CE stress was associated with changes in glucose and amino acids in plasma. Although further study is needed to clarify how these changes are specifically linked to anxiety-like behavior, this study suggests the potential for nutritional intervention to counter stress in humans exposed to novel environments.</div
Body weight changes in CT and CE mice.
Exposure to a novel environment is psychologically and physically stressful for humans and animals. The response has been reported to involve enhanced sympathetic nervous system activity, but changes in nutrient levels under stress are not fully understood. As a form of exposure to a novel environment, repeated cage exchange (CE, four times at 2-h intervals for 8 h from 08:00 h) during the light phase with no restraint on movement was applied to A/J mice, a strain particularly prone to stress. Body temperature was measured with a temperature-sensing microchip implanted in the interscapular region. The stress conditions and anxiety level were evaluated by measuring urinary catecholamines and corticosterone and by performing an anxiety-like behavior test, respectively. Major nutrients such as glucose, fatty acids, and amino acids in the plasma were also examined. CE mice showed a significant increase in body temperature with each CE. They also showed a significantly greater reduction of body weight change, more water intake, and higher levels of urinary catecholamines and corticosterone and anxiety-like behavior score than control mice. The model revealed a significantly lower plasma glucose level and higher levels of several essential amino acids, such as branched-chain amino acids and phenylalanine, than those of control mice. Meanwhile, free fatty acids and several amino acids such as arginine, aspartic acid, proline, threonine, and tryptophan in both sets of mice were significantly decreased from the corresponding levels at 08:00 h, while similar plasma levels were exhibited between mice with and without CE. In conclusion, repeated CE stress was associated with changes in glucose and amino acids in plasma. Although further study is needed to clarify how these changes are specifically linked to anxiety-like behavior, this study suggests the potential for nutritional intervention to counter stress in humans exposed to novel environments.</div
Raw data of Tables 1 and 3.
Exposure to a novel environment is psychologically and physically stressful for humans and animals. The response has been reported to involve enhanced sympathetic nervous system activity, but changes in nutrient levels under stress are not fully understood. As a form of exposure to a novel environment, repeated cage exchange (CE, four times at 2-h intervals for 8 h from 08:00 h) during the light phase with no restraint on movement was applied to A/J mice, a strain particularly prone to stress. Body temperature was measured with a temperature-sensing microchip implanted in the interscapular region. The stress conditions and anxiety level were evaluated by measuring urinary catecholamines and corticosterone and by performing an anxiety-like behavior test, respectively. Major nutrients such as glucose, fatty acids, and amino acids in the plasma were also examined. CE mice showed a significant increase in body temperature with each CE. They also showed a significantly greater reduction of body weight change, more water intake, and higher levels of urinary catecholamines and corticosterone and anxiety-like behavior score than control mice. The model revealed a significantly lower plasma glucose level and higher levels of several essential amino acids, such as branched-chain amino acids and phenylalanine, than those of control mice. Meanwhile, free fatty acids and several amino acids such as arginine, aspartic acid, proline, threonine, and tryptophan in both sets of mice were significantly decreased from the corresponding levels at 08:00 h, while similar plasma levels were exhibited between mice with and without CE. In conclusion, repeated CE stress was associated with changes in glucose and amino acids in plasma. Although further study is needed to clarify how these changes are specifically linked to anxiety-like behavior, this study suggests the potential for nutritional intervention to counter stress in humans exposed to novel environments.</div
Parameters of the statistical analysis for Table 3.
Parameters of the statistical analysis for Table 3.</p
Diagram of the way to use mice for the experiments.
Diagram of the way to use mice for the experiments.</p
Psychological parameters in CT and CE mice at 16:00 h after the respective procedures.
Psychological parameters in CT and CE mice at 16:00 h after the respective procedures.</p
Changes in urinary catecholamines and creatinine during the cage exchange procedure.
For norepinephrine (A, NE), epinephrine (B, Epi), and dopamine (C, DA), the value is expressed as ng of substance/mg of creatinine (Cr). Urinary Cr is presented in (D). The concentration or ratio means for mice without (CT, open circle) and with cage exchange (CE, closed circle) are shown. The data are presented as the mean ± SEM (n = 7–10 samples). The data were analyzed statistically by the Mann–Whitney U test or Kruskal–Wallis test, followed by the Steel–Dwass test as a post hoc test. Significant differences are shown as *p p p < 0.05) among the values of CT or CE mice at the timepoints.</p
Fig 1 -
Change in body temperature in mice without (A) or with (B) repeated cage exchange. The mean values for mice without (CT, large open circle) and with cage exchange (CE, large closed circle) are presented. Arrows in B denote the time when cage exchange was performed. Both sets of mice were under fed and fasting (8 h) conditions as indicated by the long open and closed boxes, respectively. The data are presented as the mean ± SEM (n = 10). The raw data (CT, small closed circles; CE, small open circles) are presented as dots in the figure. The data were analyzed statistically by one-way repeated measures ANOVA followed by Bonferroni’s multiple comparisons test as a post hoc test. Differences are shown as **p (16, 288) = 22.6, p < 0.01).</p
Raw data of Fig 1.
Exposure to a novel environment is psychologically and physically stressful for humans and animals. The response has been reported to involve enhanced sympathetic nervous system activity, but changes in nutrient levels under stress are not fully understood. As a form of exposure to a novel environment, repeated cage exchange (CE, four times at 2-h intervals for 8 h from 08:00 h) during the light phase with no restraint on movement was applied to A/J mice, a strain particularly prone to stress. Body temperature was measured with a temperature-sensing microchip implanted in the interscapular region. The stress conditions and anxiety level were evaluated by measuring urinary catecholamines and corticosterone and by performing an anxiety-like behavior test, respectively. Major nutrients such as glucose, fatty acids, and amino acids in the plasma were also examined. CE mice showed a significant increase in body temperature with each CE. They also showed a significantly greater reduction of body weight change, more water intake, and higher levels of urinary catecholamines and corticosterone and anxiety-like behavior score than control mice. The model revealed a significantly lower plasma glucose level and higher levels of several essential amino acids, such as branched-chain amino acids and phenylalanine, than those of control mice. Meanwhile, free fatty acids and several amino acids such as arginine, aspartic acid, proline, threonine, and tryptophan in both sets of mice were significantly decreased from the corresponding levels at 08:00 h, while similar plasma levels were exhibited between mice with and without CE. In conclusion, repeated CE stress was associated with changes in glucose and amino acids in plasma. Although further study is needed to clarify how these changes are specifically linked to anxiety-like behavior, this study suggests the potential for nutritional intervention to counter stress in humans exposed to novel environments.</div