121 research outputs found

    Decomposed Guided Dynamic Filters for Efficient RGB-Guided Depth Completion

    Full text link
    RGB-guided depth completion aims at predicting dense depth maps from sparse depth measurements and corresponding RGB images, where how to effectively and efficiently exploit the multi-modal information is a key issue. Guided dynamic filters, which generate spatially-variant depth-wise separable convolutional filters from RGB features to guide depth features, have been proven to be effective in this task. However, the dynamically generated filters require massive model parameters, computational costs and memory footprints when the number of feature channels is large. In this paper, we propose to decompose the guided dynamic filters into a spatially-shared component multiplied by content-adaptive adaptors at each spatial location. Based on the proposed idea, we introduce two decomposition schemes A and B, which decompose the filters by splitting the filter structure and using spatial-wise attention, respectively. The decomposed filters not only maintain the favorable properties of guided dynamic filters as being content-dependent and spatially-variant, but also reduce model parameters and hardware costs, as the learned adaptors are decoupled with the number of feature channels. Extensive experimental results demonstrate that the methods using our schemes outperform state-of-the-art methods on the KITTI dataset, and rank 1st and 2nd on the KITTI benchmark at the time of submission. Meanwhile, they also achieve comparable performance on the NYUv2 dataset. In addition, our proposed methods are general and could be employed as plug-and-play feature fusion blocks in other multi-modal fusion tasks such as RGB-D salient object detection

    LRRU: Long-short Range Recurrent Updating Networks for Depth Completion

    Full text link
    Existing deep learning-based depth completion methods generally employ massive stacked layers to predict the dense depth map from sparse input data. Although such approaches greatly advance this task, their accompanied huge computational complexity hinders their practical applications. To accomplish depth completion more efficiently, we propose a novel lightweight deep network framework, the Long-short Range Recurrent Updating (LRRU) network. Without learning complex feature representations, LRRU first roughly fills the sparse input to obtain an initial dense depth map, and then iteratively updates it through learned spatially-variant kernels. Our iterative update process is content-adaptive and highly flexible, where the kernel weights are learned by jointly considering the guidance RGB images and the depth map to be updated, and large-to-small kernel scopes are dynamically adjusted to capture long-to-short range dependencies. Our initial depth map has coarse but complete scene depth information, which helps relieve the burden of directly regressing the dense depth from sparse ones, while our proposed method can effectively refine it to an accurate depth map with less learnable parameters and inference time. Experimental results demonstrate that our proposed LRRU variants achieve state-of-the-art performance across different parameter regimes. In particular, the LRRU-Base model outperforms competing approaches on the NYUv2 dataset, and ranks 1st on the KITTI depth completion benchmark at the time of submission. Project page: https://npucvr.github.io/LRRU/.Comment: Published in ICCV 202

    The Second Monocular Depth Estimation Challenge

    Full text link
    This paper discusses the results for the second edition of the Monocular Depth Estimation Challenge (MDEC). This edition was open to methods using any form of supervision, including fully-supervised, self-supervised, multi-task or proxy depth. The challenge was based around the SYNS-Patches dataset, which features a wide diversity of environments with high-quality dense ground-truth. This includes complex natural environments, e.g. forests or fields, which are greatly underrepresented in current benchmarks. The challenge received eight unique submissions that outperformed the provided SotA baseline on any of the pointcloud- or image-based metrics. The top supervised submission improved relative F-Score by 27.62%, while the top self-supervised improved it by 16.61%. Supervised submissions generally leveraged large collections of datasets to improve data diversity. Self-supervised submissions instead updated the network architecture and pretrained backbones. These results represent a significant progress in the field, while highlighting avenues for future research, such as reducing interpolation artifacts at depth boundaries, improving self-supervised indoor performance and overall natural image accuracy.Comment: Published at CVPRW202

    Influence of common genetic variation on lung cancer risk: meta-analysis of 14 900 cases and 29 485 controls

    Get PDF
    Recent genome-wide association studies (GWASs) have identified common genetic variants at 5p15.33, 6p21-6p22 and 15q25.1 associated with lung cancer risk. Several other genetic regions including variants of CHEK2 (22q12), TP53BP1 (15q15) and RAD52 (12p13) have been demonstrated to influence lung cancer risk in candidate- or pathway-based analyses. To identify novel risk variants for lung cancer, we performed a meta-analysis of 16 GWASs, totaling 14 900 cases and 29 485 controls of European descent. Our data provided increased support for previously identified risk loci at 5p15 (P = 7.2 × 10−16), 6p21 (P = 2.3 × 10−14) and 15q25 (P = 2.2 × 10−63). Furthermore, we demonstrated histology-specific effects for 5p15, 6p21 and 12p13 loci but not for the 15q25 region. Subgroup analysis also identified a novel disease locus for squamous cell carcinoma at 9p21 (CDKN2A/p16INK4A/p14ARF/CDKN2B/p15INK4B/ANRIL; rs1333040, P = 3.0 × 10−7) which was replicated in a series of 5415 Han Chinese (P = 0.03; combined analysis, P = 2.3 × 10−8). This large analysis provides additional evidence for the role of inherited genetic susceptibility to lung cancer and insight into biological differences in the development of the different histological types of lung cance

    Feature Activation through First Power Linear Unit with Sign

    No full text
    The activation function represents a crucial component in the design of a convolutional neural network (CNN). It enables the efficient extraction of multiple features from visual patterns, and introduces systemic non-linearity to data processing. This paper proposes a novel and insightful activation method termed FPLUS, which exploits mathematical power function with polar signs in form. It is enlightened by common inverse operations while endowed with an intuitive meaning of bionics. The formulation is derived theoretically under conditions of some prior knowledge and anticipative properties. Subsequently, its feasibility is verified through a series of experiments using typical benchmark datasets. The results indicate that our approach bears superior competitiveness among numerous activation functions, as well as compatible stability across many CNN architectures. Furthermore, we extend the function presented to a more generalized type called PFPLUS with two parameters that can be fixed or learnable, so as to augment its expressive capacity. The outcomes of identical tests serve to validate this improvement. Therefore, we believe the work in this paper holds a certain value in enriching the family of activation units
    • …
    corecore