15,645 research outputs found

    On the lower tail variational problem for random graphs

    Full text link
    We study the lower tail large deviation problem for subgraph counts in a random graph. Let XHX_H denote the number of copies of HH in an Erd\H{o}s-R\'enyi random graph G(n,p)\mathcal{G}(n,p). We are interested in estimating the lower tail probability P(XH(1δ)EXH)\mathbb{P}(X_H \le (1-\delta) \mathbb{E} X_H) for fixed 0<δ<10 < \delta < 1. Thanks to the results of Chatterjee, Dembo, and Varadhan, this large deviation problem has been reduced to a natural variational problem over graphons, at least for pnαHp \ge n^{-\alpha_H} (and conjecturally for a larger range of pp). We study this variational problem and provide a partial characterization of the so-called "replica symmetric" phase. Informally, our main result says that for every HH, and 0<δ<δH0 < \delta < \delta_H for some δH>0\delta_H > 0, as p0p \to 0 slowly, the main contribution to the lower tail probability comes from Erd\H{o}s-R\'enyi random graphs with a uniformly tilted edge density. On the other hand, this is false for non-bipartite HH and δ\delta close to 1.Comment: 15 pages, 5 figures, 1 tabl

    A Simple Parallel Algorithm for Natural Joins on Binary Relations

    Get PDF

    A Dynamic I/O-Efficient Structure for One-Dimensional Top-k Range Reporting

    Full text link
    We present a structure in external memory for "top-k range reporting", which uses linear space, answers a query in O(lg_B n + k/B) I/Os, and supports an update in O(lg_B n) amortized I/Os, where n is the input size, and B is the block size. This improves the state of the art which incurs O(lg^2_B n) amortized I/Os per update.Comment: In PODS'1

    Sphere packing bounds via spherical codes

    Full text link
    The sphere packing problem asks for the greatest density of a packing of congruent balls in Euclidean space. The current best upper bound in all sufficiently high dimensions is due to Kabatiansky and Levenshtein in 1978. We revisit their argument and improve their bound by a constant factor using a simple geometric argument, and we extend the argument to packings in hyperbolic space, for which it gives an exponential improvement over the previously known bounds. Additionally, we show that the Cohn-Elkies linear programming bound is always at least as strong as the Kabatiansky-Levenshtein bound; this result is analogous to Rodemich's theorem in coding theory. Finally, we develop hyperbolic linear programming bounds and prove the analogue of Rodemich's theorem there as well.Comment: 30 pages, 2 figure

    A short proof of the multidimensional Szemer\'edi theorem in the primes

    Full text link
    Tao conjectured that every dense subset of Pd\mathcal{P}^d, the dd-tuples of primes, contains constellations of any given shape. This was very recently proved by Cook, Magyar, and Titichetrakun and independently by Tao and Ziegler. Here we give a simple proof using the Green-Tao theorem on linear equations in primes and the Furstenberg-Katznelson multidimensional Szemer\'edi theorem.Comment: 5 page
    corecore