125 research outputs found

    3D Automatic Segmentation Method for Retinal Optical Coherence Tomography Volume Data Using Boundary Surface Enhancement

    Full text link
    With the introduction of spectral-domain optical coherence tomography (SDOCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, there is a critical need for the development of 3D segmentation methods for processing these data. We present here a novel 3D automatic segmentation method for retinal OCT volume data. Briefly, to segment a boundary surface, two OCT volume datasets are obtained by using a 3D smoothing filter and a 3D differential filter. Their linear combination is then calculated to generate new volume data with an enhanced boundary surface, where pixel intensity, boundary position information, and intensity changes on both sides of the boundary surface are used simultaneously. Next, preliminary discrete boundary points are detected from the A-Scans of the volume data. Finally, surface smoothness constraints and a dynamic threshold are applied to obtain a smoothed boundary surface by correcting a small number of error points. Our method can extract retinal layer boundary surfaces sequentially with a decreasing search region of volume data. We performed automatic segmentation on eight human OCT volume datasets acquired from a commercial Spectralis OCT system, where each volume of data consisted of 97 OCT images with a resolution of 496 512; experimental results show that this method can accurately segment seven layer boundary surfaces in normal as well as some abnormal eyes.Comment: 27 pages, 19 figure

    Automated 3D Segmentation of Kidneys and Tumors in MICCAI KiTS 2023 Challenge

    Full text link
    Kidney and Kidney Tumor Segmentation Challenge (KiTS) 2023 offers a platform for researchers to compare their solutions to segmentation from 3D CT. In this work, we describe our submission to the challenge using automated segmentation of Auto3DSeg available in MONAI. Our solution achieves the average dice of 0.835 and surface dice of 0.723, which ranks first and wins the KiTS 2023 challenge.Comment: MICCAI 2023, KITS 2023 challenge 1st plac

    ChuXin: 1.6B Technical Report

    Full text link
    In this report, we present ChuXin, an entirely open-source language model with a size of 1.6 billion parameters. Unlike the majority of works that only open-sourced the model weights and architecture, we have made everything needed to train a model available, including the training data, the training process, and the evaluation code. Our goal is to empower and strengthen the open research community, fostering transparency and enabling a new wave of innovation in the field of language modeling. Furthermore, we extend the context length to 1M tokens through lightweight continual pretraining and demonstrate strong needle-in-a-haystack retrieval performance. The weights for both models are available at Hugging Face to download and use.Comment: Technical Repor

    Aorta Segmentation from 3D CT in MICCAI SEG.A. 2023 Challenge

    Full text link
    Aorta provides the main blood supply of the body. Screening of aorta with imaging helps for early aortic disease detection and monitoring. In this work, we describe our solution to the Segmentation of the Aorta (SEG.A.231) from 3D CT challenge. We use automated segmentation method Auto3DSeg available in MONAI. Our solution achieves an average Dice score of 0.920 and 95th percentile of the Hausdorff Distance (HD95) of 6.013, which ranks first and wins the SEG.A. 2023 challenge.Comment: MICCAI 2023, SEG.A. 2023 challenge 1st plac

    Stochastic-Sign SGD for Federated Learning with Theoretical Guarantees

    Full text link
    Federated learning (FL) has emerged as a prominent distributed learning paradigm. FL entails some pressing needs for developing novel parameter estimation approaches with theoretical guarantees of convergence, which are also communication efficient, differentially private and Byzantine resilient in the heterogeneous data distribution settings. Quantization-based SGD solvers have been widely adopted in FL and the recently proposed SIGNSGD with majority vote shows a promising direction. However, no existing methods enjoy all the aforementioned properties. In this paper, we propose an intuitively-simple yet theoretically-sound method based on SIGNSGD to bridge the gap. We present Stochastic-Sign SGD which utilizes novel stochastic-sign based gradient compressors enabling the aforementioned properties in a unified framework. We also present an error-feedback variant of the proposed Stochastic-Sign SGD which further improves the learning performance in FL. We test the proposed method with extensive experiments using deep neural networks on the MNIST dataset and the CIFAR-10 dataset. The experimental results corroborate the effectiveness of the proposed method

    Efficient Temporally-Aware DeepFake Detection using H.264 Motion Vectors

    Full text link
    Video DeepFakes are fake media created with Deep Learning (DL) that manipulate a person's expression or identity. Most current DeepFake detection methods analyze each frame independently, ignoring inconsistencies and unnatural movements between frames. Some newer methods employ optical flow models to capture this temporal aspect, but they are computationally expensive. In contrast, we propose using the related but often ignored Motion Vectors (MVs) and Information Masks (IMs) from the H.264 video codec, to detect temporal inconsistencies in DeepFakes. Our experiments show that this approach is effective and has minimal computational costs, compared with per-frame RGB-only methods. This could lead to new, real-time temporally-aware DeepFake detection methods for video calls and streaming

    Probing Ground-state Single-electron Self-exchange Across A Molecule-metal Interface

    Get PDF
    We have probed single-molecule redox reaction dynamics of hemin (chloride) adsorbed on Ag nanoparticle surfaces by single-molecule surface-enhanced Raman spectroscopy (SMSERS) combined with spectroelectrochemistry. Redox reaction at the molecule/Ag interface is identified and probed by the prominent fluctuations of the Raman frequency of a specific vibrational mode, nu(4), which is a typical marker of the redox state of the iron center in a hemin molecule. On the basis of the autocorrelation and cross-correlation analysis of the single-molecule Raman spectral trajectories and the control measurements of single-molecule spectroelectochemistry and electrochemical STM, we suggest that the single-molecule redox reaction dynamics at the hemin Ag interface is primarily driven by thermal fluctuations. The spontaneous fluctuation dynamics of the single-molecule redox reaction is measured under no external electric potential across the molecule metal interfaces, which provides a novel and unique approach to characterize the interfacial electron transfer at the molecule metal interfaces. Our demonstrated approaches are powerful for obtaining molecular coupling and dynamics involved in interfacial electron transfer processes. The new information obtained is critical for a further understanding, design, and manipulation of the charge transfer processes at the molecule metal interface or metal-molecule-metal junctions, which are fundamental elements in single-molecule electronics, catalysis, and solar energy conversion

    Automated segmentation of intracranial hemorrhages from 3D CT

    Full text link
    Intracranial hemorrhage segmentation challenge (INSTANCE 2022) offers a platform for researchers to compare their solutions to segmentation of hemorrhage stroke regions from 3D CTs. In this work, we describe our solution to INSTANCE 2022. We use a 2D segmentation network, SegResNet from MONAI, operating slice-wise without resampling. The final submission is an ensemble of 18 models. Our solution (team name NVAUTO) achieves the top place in terms of Dice metric (0.721), and overall rank 2. It is implemented with Auto3DSeg.Comment: INSTANCE22 challenge report, MICCAI2022. arXiv admin note: substantial text overlap with arXiv:2209.0954
    • …
    corecore