39 research outputs found

    Seasonal Characteristics of New Particle Formation and Growth in Urban Beijing

    Get PDF
    Understanding the atmospheric new particle formation (NPF) process within the global range is important for revealing the budget of atmospheric aerosols and their impacts. We investigated the seasonal characteristics of NPF in the urban environment of Beijing. Aerosol size distributions down to similar to 1 nm and H2SO4 concentration were measured during 2018-2019. The observed formation rate of 1.5 nm particles (J(1.5)) is significantly higher than those in the clean environment, e.g., Hyytiala, whereas the growth rate is not significantly different. Both J(1.5) and NPF frequency in urban Beijing show a clear seasonal variation with maxima in winter and minima in summer, while the observed growth rates are generally within the same range around the year. We show that ambient temperature is a governing factor driving the seasonal variation of J(1.5). In contrast, the condensation sink and the daily maximum H2SO4 concentration show no significant seasonal variation during the NPF periods. In all four seasons, condensation of H2SO4 and (H2SO4)(n)(amine)(n) clusters contributes significantly to the growth rates in the sub-3 nm size range, whereas it is less important for the observed growth rates of particles above 3 nm. Therefore, other species are always needed for the growth of larger particles.Peer reviewe

    Is reducing new particle formation a plausible solution to mitigate particulate air pollution in Beijing and other Chinese megacities?

    Get PDF
    Atmospheric gas-to-particle conversion is a crucial or even dominant contributor to haze formation in Chinese megacities in terms of aerosol number, surface area and mass. Based on our comprehensive observations in Beijing during 15 January 2018-31 March 2019, we are able to show that 80-90% of the aerosol mass (PM2.5) was formed via atmospheric reactions during the haze days and over 65% of the number concentration of haze particles resulted from new particle formation (NPF). Furthermore, the haze formation was faster when the subsequent growth of newly formed particles was enhanced. Our findings suggest that in practice almost all present-day haze episodes originate from NPF, mainly since the direct emission of primary particles in Beijing has considerably decreased during recent years. We also show that reducing the subsequent growth rate of freshly formed particles by a factor of 3-5 would delay the buildup of haze episodes by 1-3 days. Actually, this delay would decrease the length of each haze episode, so that the number of annual haze days could be approximately halved. Such improvement in air quality can be achieved with targeted reduction of gas-phase precursors for NPF, mainly dimethyl amine and ammonia, and further reductions of SO2 emissions. Furthermore, reduction of anthropogenic organic and inorganic precursor emissions would slow down the growth rate of newly-formed particles and consequently reduce the haze formation.Peer reviewe

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Poor Efficacy of Immune Checkpoint Inhibitors Plus Chemotherapy in Lung Cancer Patients with EGFR/ERBB2 Exon 20 Insertion

    No full text
    Background: EGFR and ERBB2 exon 20 insertion (Ex20ins) account for a small fraction of patients with EGFR mutations. The efficacy of immune checkpoint inhibitors (ICIs) for these patients was still controversial. Methods: This retrospective study enrolled lung cancer patients harboring either EGFR or ERBB2 Ex20ins mutations. All the patients were treated with platinum-based chemotherapy plus ICIs, or platinum-based chemotherapy. The demographic features and clinical outcome of each patient were reviewed and analyzed. Results: When treated with immunochemotherapy, patients with EGFR/ERBB2 Ex20ins mutations (n = 31) had poor PFS compared with those without EGFR mutations (n = 141, 5.0 mon and 11.2 mon, p n = 24), these patients with EGFR/ERBB2 Ex20ins mutations had similar PFS (5.0 mon and 4.1 mon, p = 0.625), ORR (37.5% vs. 48.4%), and DCR (70.8% vs. 77.4%). In the patients with EGFR/ERBB2 Ex20ins mutations, the PFS of those treated with chemotherapy (n = 54) and those treated with immunochemotherapy (n = 31) was 6.5 mon vs. 5.0 mon (p = 0.066). In the EGFR Ex20ins subgroup, the PFS of addition of bevacizumab to chemotherapy (n = 20) and chemotherapy alone (n = 16) was 8.8 mon and 5.2 mon, respectively (p = 0.082) or immunochemotherapy (n = 15, 8.8 mon and 5.0 mon, p = 0.097). Similarly, in the ERBB2 subgroup, the combination of bevacizumab and chemotherapy achieved a numerically longer PFS over chemotherapy alone (9.1 mon and 4.5 mon, p = 0.253), but there was no statistical significance. Conclusions: This study showed that platinum-based chemotherapy plus ICIs had limited efficiency compared to platinum-based chemotherapy for patients with EGFR/ERBB2 Ex20ins. Chemotherapy plus bevacizumab may be a potential scheme for these patients

    Polymorphism, Expression of Natural Resistance-associated Macrophage Protein 1 Encoding Gene () and Its Association with Immune Traits in Pigs

    No full text
    Natural resistance-associated macrophage protein 1 encoding gene (NRAMP1) plays an important role in immune response against intracellular pathogens. To evaluate the effects of NRAMP1 gene on immune capacity in pigs, tissue expression of NRAMP1 mRNA was observed by real time quantitative polymerase chain reaction (PCR), and the results revealed NRAMP1 expressed widely in nine tissues. One single nucleotide polymorphism (SNP) (ENSSSCG00000025058: g.130 C>T) in exon1 and one SNP (ENSSSCG00000025058: g.657 A>G) in intron1 region of porcine NRAMP1 gene were demonstrated by DNA sequencing and PCR-RFLP analysis. A further analysis of SNP genotypes associated with immune traits including contain of white blood cell (WBC), granulocyte, lymphocyte, monocyte (MO), rate of cytotoxin in monocyte (MC) and CD4/CD8 T lymphocyte subpopulations in blood was carried out in four pig populations including Large White and three Chinese indigenous breeds (Wannan Black, Huai pig and Wei pig). The results showed that the SNP (ENSSSCG00000025058: g.130 C>T) was significantly associated with level of WBC % (p = 0.031), MO% (p = 0.024), MC% (p = 0.013) and CD4−CD8+ T lymphocyte (p = 0.023). The other SNP (ENSSSCG00000025058: g.657 A>G) was significantly associated with the level of MO% (p = 0.012), MC% (p = 0.019) and CD4−CD8+ T lymphocyte (p = 0.037). These results indicate that the NRAMP1 gene can be regarded as a molecular marker for genetic selection of disease susceptibility in pig breeding

    Nomogram Personalizes and Visualizes the Overall Survival of Patients with Triple-Negative Breast Cancer Based on the Immune Genome

    No full text
    Background. Triple-negative breast cancer (TNBC) is usually poorly differentiated, highly invasive, susceptible to distant metastasis, and less responsive to endocrine and targeted therapy. However, immunotherapy is a promising treatment for TNBC patients recently. Methods. The prognostic value of immune-related genes (IRGs) was explored by using RNA sequencing and microarray data of 123 and 107 TNBC patients from TCGA and GEO databases, respectively. Results. In TCGA database, GO and KEGG pathway analysis of 119 differential IRGs indicated that they actively participate in the interaction of cytokines and receptors. A nomogram model constructed by the prognosis-related CCL25, IL29, TDGF3, GPR44, and GREM2 in the IRGs could personalize and visualize the 1-, 2-, 3-, 4-, and 5-year overall survival (OS) of TNBC patients. Moreover, TNBC patients could be defined as low-risk (risk score<194) or high-risk (risk score≥194) cohorts based on the risk score derived from the nomogram model. The results could be validated by the GSE58812 dataset. Furthermore, the risk score was an independent risk factor for TNBC patients (HR=1.019, 95% CI 1.012-1.027, p<0.001) and was positively related to stage (p=0.017). Interestingly, the risk score could reflect the infiltration of B cells, CD4+ T cells, CD8+ T cells, dendritic cells, and neutrophils. Conclusion. These findings provided a reference for personalized OS prediction in TNBC patients and might be potential immune biomarkers for designing novel therapy
    corecore