91 research outputs found

    In China, Students in Crowded Dormitories with a Low Ventilation Rate Have More Common Colds: Evidence for Airborne Transmission

    Get PDF
    OBJECTIVE: To test whether the incidence of common colds among college students in China is associated with ventilation rates and crowdedness in dormitories. METHODS: In Phase I of the study, a cross-sectional study, 3712 students living in 1569 dorm rooms in 13 buildings responded to a questionnaire about incidence and duration of common colds in the previous 12 months. In Phase II, air temperature, relative humidity and CO(2) concentration were measured for 24 hours in 238 dorm rooms in 13 buildings, during both summer and winter. Out-to indoor air flow rates at night were calculated based on measured CO(2) concentrations. RESULTS: In Phase I, 10% of college students reported an incidence of more than 6 common colds in the previous 12 months, and 15% reported that each infection usually lasted for more than 2 weeks. Students in 6-person dorm rooms were about 2 times as likely to have an incidence of common colds ≥6 times per year and a duration ≥2 weeks, compared to students in 3-person rooms. In Phase II, 90% of the measured dorm rooms had an out-to indoor air flow rate less than the Chinese standard of 8.3 L/s per person during the heating season. There was a dose-response relationship between out-to indoor air flow rate per person in dorm rooms and the proportion of occupants with annual common cold infections ≥6 times. A mean ventilation rate of 5 L/(s•person) in dorm buildings was associated with 5% of self reported common cold ≥6 times, compared to 35% at 1 L/(s•person). CONCLUSION: Crowded dormitories with low out-to indoor airflow rates are associated with more respiratory infections among college students

    Tulp1 deficiency causes early-onset retinal degeneration through affecting ciliogenesis and activating ferroptosis in zebrafish

    Get PDF
    Mutations in TUB-like protein 1 (TULP1) are associated with severe early-onset retinal degeneration in humans. However, the pathogenesis remains largely unknown. There are two homologous genes of TULP1 in zebrafish, namely tulp1a and tulp1b. Here, we generated the single knockout (tulp1a(−/−) and tulp1b(−/−)) and double knockout (tulp1-dKO) models in zebrafish. Knockout of tulp1a resulted in the mislocalization of UV cone opsins and the degeneration of UV cones specifically, while knockout of tulp1b resulted in mislocalization of rod opsins and rod-cone degeneration. In the tulp1-dKO zebrafish, mislocalization of opsins was present in all types of photoreceptors, and severe degeneration was observed at a very early age, mimicking the clinical manifestations of TULP1 patients. Photoreceptor cilium length was significantly reduced in the tulp1-dKO retinas. RNA-seq analysis showed that the expression of tektin2 (tekt2), a ciliary and flagellar microtubule structural component, was downregulated in the tulp1-dKO zebrafish. Dual-luciferase reporter assay suggested that Tulp1a and Tulp1b transcriptionally activate the promoter of tekt2. In addition, ferroptosis might be activated in the tulp1-dKO zebrafish, as suggested by the up-regulation of genes related to the ferroptosis pathway, the shrinkage of mitochondria, reduction or disappearance of mitochondria cristae, and the iron and lipid droplet deposition in the retina of tulp1-dKO zebrafish. In conclusion, our study establishes an appropriate zebrafish model for TULP1-associated retinal degeneration and proposes that loss of TULP1 causes defects in cilia structure and opsin trafficking through the downregulation of tekt2, which further increases the death of photoreceptors via ferroptosis. These findings offer insight into the pathogenesis and clinical treatment of early-onset retinal degeneration

    Rod genesis driven by mafba in an nrl knockout zebrafish model with altered photoreceptor composition and progressive retinal degeneration

    Get PDF
    Neural retina leucine zipper (NRL) is an essential gene for the fate determination and differentiation of the precursor cells into rod photoreceptors in mammals. Mutations in NRL are associated with the autosomal recessive enhanced S-cone syndrome and autosomal dominant retinitis pigmentosa. However, the exact role of Nrl in regulating the development and maintenance of photoreceptors in the zebrafish (Danio rerio), a popular animal model used for retinal degeneration and regeneration studies, has not been fully determined. In this study, we generated an nrl knockout zebrafish model via the CRISPR-Cas9 technology and observed a surprising phenotype characterized by a reduced number, but not the total loss, of rods and over-growth of green cones. We discovered two waves of rod genesis, nrl-dependent and -independent at the embryonic and post-embryonic stages, respectively, in zebrafish by monitoring the rod development. Through bulk and single-cell RNA sequencing, we characterized the gene expression profiles of the whole retina and each retinal cell type from the wild type and nrl knockout zebrafish. The over-growth of green cones and mis-expression of green-cone-specific genes in rods in nrl mutants suggested that there are rod/green-cone bipotent precursors, whose fate choice between rod versus green-cone is controlled by nrl. Besides, we identified the mafba gene as a novel regulator of the nrl-independent rod development, based on the cell-type-specific expression patterns and the retinal phenotype of nrl/mafba double-knockout zebrafish. Gene collinearity analysis revealed the evolutionary origin of mafba and suggested that the function of mafba in rod development is specific to modern fishes. Furthermore, the altered photoreceptor composition and abnormal gene expression in nrl mutants caused progressive retinal degeneration and subsequent regeneration. Accordingly, this study revealed a novel function of the mafba gene in rod development and established a working model for the developmental and regulatory mechanisms regarding the rod and green-cone photoreceptors in zebrafish

    Non-Histone Lysine Crotonylation Is Involved in the Regulation of White Fat Browning

    No full text
    Lysine crotonylation modification is a novel acylation modification that is similar to acetylation modification. Studies have found that protein acetylation plays an important regulatory part in the occurrence and prevention of obesity and is involved in the regulation of glucose metabolism, tricarboxylic acid cycle, white fat browning and fatty acid metabolism. Therefore, we speculate that protein crotonylation may also play a more vital role in regulating the browning of white fat. To verify this conjecture, we identified 7254 crotonyl modification sites and 1629 modified proteins in iWAT of white fat browning model mice by affinity enrichment and liquid chromatography–mass spectrometry (LC-MS/MS). We selected five representative proteins in the metabolic process, namely glycerol-3-phosphate dehydrogenase 1 (GPD1), fatty acid binding protein 4 (FABP4), adenylate kinase 2 (AK2), triosephosphate isomerase 1 (TPI1) and NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 8 (NDUFA8). Through qPCR, Western blotting, immunofluorescence staining, Oil Red O staining and HE staining, we demonstrated that GPD1 and FABP4 inhibited white fat browning, while AK2, TPI1 and NDUFA8 promoted white fat browning. GPD1 and FABP4 proteins were downregulated by crotonylation modification, while AK2, TPI1 and NDUFA8 proteins were upregulated by crotonylation modification. Further detection found that the crotonylation modification of GPD1, FABP4, AK2, TPI1 and NDUFA8 promoted white fat browning, which was consistent with the sequencing results. These results indicate that the protein crotonylation is involved in regulating white fat browning, which is of great significance for controlling obesity and treating obesity-related diseases

    The Mechanism of Leptin on Inhibiting Fibrosis and Promoting Browning of White Fat by Reducing ITGA5 in Mice

    No full text
    Leptin is a small molecule protein secreted by adipocytes, which can promote white fat browning through activating the hypothalamic nervous system and inhibiting downstream signaling pathways. Moreover, white fat browning has been proven to alleviate fat tissue fibrosis. This study explores the mechanism of leptin in regulating adipose tissue fibrosis and white fat browning. After treating mice with leptin, we screened out the recombinant integrin alpha 5 (ITGA5) through proteomics sequencing, which may play a role in adipose tissue fibrosis. Through real-time quantitative PCR (qPCR), western blotting (WB), hematoxylin-eosin (HE) staining, Masson’s trichrome, immunofluorescence, immunohistochemistry, etc., the results showed that after leptin treated adipocytes, the expression of fibrosis-related genes and ITGA5 was significantly down-regulated in adipocytes. We constructed fibrosis model through transforming growth factor-β (TGF-β) and a high-fat diet (HFD), and treated with ITGA5 overexpression vector and interference fragments. The results indicated the expression of fibrosis-related genes were significantly down-regulated after interfering with ITGA5. After treating adipocytes with wortmannin, fibrosis-related gene expression was inhibited after overexpression of ITGA5. Moreover, after injecting mice with leptin, we also found that leptin significantly up-regulated the expression of adipose tissue browning-related genes. Overall, our research shows that leptin can inhibit the activation of phosphatidylinositol 3 kinase (PI3K)-protein kinase B (AKT) signaling pathway by reducing the expression of ITGA5, which could alleviate adipose tissue fibrosis, and further promote white fat browning. Our research provides a theoretical basis for further research on the effect of leptin in fibrosis-related adipose tissue metabolism
    • …
    corecore