13 research outputs found
Residue management alters microbial diversity and activity without affecting their community composition in black soil, Northeast China
Residue management is an important agricultural practice for improving soil fertility. To reveal the impact of residue management on soil microbial community, we conducted a field experiment with three treatments: no straw returning (control, CK), straw returning (SR), and straw returning combined with cow manure (SM). Our results indicated that soil organic matter content was significantly higher in SR treatment than CK in both seedling and jointing stages. In seedling stage, the lowest total nitrogen content was observed in CK treatment, and significantly lower than that in SM and SR treatment. Furthermore, soil available phosphorus content was significantly higher in SM and SR treatment than CK in jointing stage. In the seedling stage, the soil microbial average wellcolor development (AWCD) value, microbial McIntosh index, and Shannon index of CK and SM treatments were significantly higher than those in SR treatment. The AWCD value and McIntosh index in the jointing stage showed similar patterns: SM > CK > SR. Permutational multivariate analysis of variance indicated that soil microbial community was significantly affected by growth stage, but unaffected by residue management. The partial Mantel test revealed that the available potassium and the C/N ratio had independent effects on soil microbial community. Overall, our results indicated that straw returning combined with cow manure had a beneficial effect on soil fertility, microbial activity and diversity
Mitochondrial Ferritin Deletion Exacerbates β
Mitochondrial ferritin (FtMt) is a mitochondrial iron storage protein which protects mitochondria from iron-induced oxidative damage. Our previous studies indicate that FtMt attenuates β-amyloid- and 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. To explore the protective effects of FtMt on β-amyloid-induced memory impairment and neuronal apoptosis and the mechanisms involved, 10-month-old wild-type and Ftmt knockout mice were infused intracerebroventricularly (ICV) with Aβ25–35 to establish an Alzheimer’s disease model. Knockout of Ftmt significantly exacerbated Aβ25–35-induced learning and memory impairment. The Bcl-2/Bax ratio in mouse hippocampi was decreased and the levels of cleaved caspase-3 and PARP were increased. The number of neuronal cells undergoing apoptosis in the hippocampus was also increased in Ftmt knockout mice. In addition, the levels of L-ferritin and FPN1 in the hippocampus were raised, and the expression of TfR1 was decreased. Increased MDA levels were also detected in Ftmt knockout mice treated with Aβ25–35. In conclusion, this study demonstrated that the neurological impairment induced by Aβ25–35 was exacerbated in Ftmt knockout mice and that this may relate to increased levels of oxidative stress
Age-specific reference values for low psoas muscle index at the L3 vertebra level in healthy populations: A multicenter study
Background and aimsThe progressive and generalized loss of skeletal muscle mass, strength and physical function is defined as sarcopenia. Sarcopenia is closely related to the prognosis of patients. Accurate diagnosis and adequate management of sarcopenia are crucial. The psoas muscle mass index taken at the third lumbar vertebra (L3-PMI, cm2/m2) is one of the established methods for evaluating skeletal muscle mass. However, the cutoff values of L3-PMI for diagnosis of sarcopenia are not yet to be clarified in Asian populations. We attempted to establish reference values for low L3-PMI that would be suitable for defining sarcopenia in the Northern Chinese population.MethodsThis was a retrospective, multicenter cross-sectional study. A search of abdominal CT imaging reports was conducted in four representative cities in northern China. Transverse CT images were measured using the analysis software Slice-O-Matic. Low psoas muscle index was defined as the 5th percentile or mean-2SD of the study group.Results1,787 healthy individuals in the study were grouped by age. The sex and number of people in each group were similar. L3-PMI had a negative linear correlation with age, and a strong correlation with the skeletal muscle index taken at the third lumbar vertebrae (L3-SMI, cm2/m2). The L3-PMI reference values in males were 5.41 cm2/m2 for 20–29 years, 4.71 cm2/m2 for 30–39 years, 4.65 cm2/m2 for 40–49 years, 4.10 cm2/m2 for 50–59 years and 3.68 cm2/m2 for over 60 years by using 5th percentile threshold. Similarly, the reference values in females were 3.32, 3.40, 3.18, 2.91, and 2.62 cm2/m2. When using mean-2SD as the reference, the values for each age group were 4.57, 4.16, 4.03, 3.37, and 2.87 cm2/m2 for males and 2.79, 2.70, 2.50, 2.30, and 2.26 cm2/m2 for females, respectively.ConclusionWe defined the reference values of age-specific low skeletal muscle mass when simply evaluated by L3-PMI. Further studies about the association of sarcopenia using these reference values with certain clinical outcomes or diseases are needed
Strong Pyro-Electro-Chemical Coupling of Elbaite/H2O2 System for Pyrocatalysis Dye Wastewater
Elbaite is a natural silicate mineral with a spontaneous electric field. In the current study, it was selected as a pyroelectric catalyst to promote hydrogen peroxide (H2O2) for dye decomposition due to its pyro-electro-chemical coupling. The behaviors and efficiency of the elbaite/H2O2 system in rhodamine B (RhB) degradation were systematically investigated. The results indicate that the optimal effective degradability of RhB reaches 100.0% at 4.0 g/L elbaite, 7.0 mL/L H2O2, and pH = 2.0 in the elbaite/H2O2 system. The elbaite/H2O2 system exhibits high recyclability and stability after recycling three times, reaching 94.5% of the degradation rate. The mechanisms of RhB degradation clarified that the hydroxyl radical (·OH) is the main active specie involved in catalytic degradation in the elbaite/H2O2 system. Moreover, not only does elbaite act as a pyroelectric catalyst to activate H2O2 in order to generate the primary ·OH for subsequent advanced oxidation reactions, but it also has the role of a dye sorbent. The elbaite/H2O2 system shows excellent application potential for the degradation of RhB
Fibroblast-to-cardiomyocyte lactate shuttle modulates hypertensive cardiac remodelling
Abstract Background Cardiac fibroblasts (CFs) and cardiomyocytes are the major cell populations in the heart. CFs not only support cardiomyocytes by producing extracellular matrix (ECM) but also assimilate myocardial nutrient metabolism. Recent studies suggest that the classical intercellular lactate shuttle may function in the heart, with lactate transported from CFs to cardiomyocytes. However, the underlying mechanisms regarding the generation and delivery of lactate from CFs to cardiomyocytes have yet to be explored. Results In this study, we found that angiotensin II (Ang II) induced CFs differentiation into myofibroblasts that, driven by cell metabolism, then underwent a shift from oxidative phosphorylation to aerobic glycolysis. During this metabolic conversion, the expression of amino acid synthesis 5-like 1 (GCN5L1) was upregulated and bound to and acetylated mitochondrial pyruvate carrier 2 (MPC2) at lysine residue 19. Hyperacetylation of MPC2k19 disrupted mitochondrial pyruvate uptake and mitochondrial respiration. GCN5L1 ablation downregulated MPC2K19 acetylation, stimulated mitochondrial pyruvate metabolism, and inhibited glycolysis and lactate accumulation. In addition, myofibroblast-specific GCN5L1-knockout mice (GCN5L1fl/fl: Periostin-Cre) showed reduced myocardial hypertrophy and collagen content in the myocardium. Moreover, cardiomyocyte-specific monocarboxylate transporter 1 (MCT1)-knockout mice (MCT1fl/fl: Myh6-Cre) exhibited blocked shuttling of lactate from CFs to cardiomyocytes and attenuated Ang II-induced cardiac hypertrophy. Conclusions Our findings suggest that GCN5L1-MPC2 signalling pathway alters metabolic patterns, and blocking MCT1 interrupts the fibroblast-to-cardiomyocyte lactate shuttle, which may attenuate cardiac remodelling in hypertension. Graphical Abstrac
Nasal delivery of nanoliposome-encapsulated ferric ammonium citrate can increase the iron content of rat brain
Abstract Background Iron deficiency in children can have significant neurological consequences, and iron supplementation is an effective treatment of choice. However, traditional routes of iron supplementation do not allow efficient iron delivery to the brain due to the presence of the blood–brain barrier. So an easily delivered iron formulation with high absorption efficiency potentially could find widespread application in iron deficient infants. Results In this study, we have developed and characterized a nanovesicular formulation of ferric ammonium citrate (ferric ammonium citrate nanoliposomes, FAC-LIP) and have shown that it can increase brain iron levels in rats following nasal administration. FAC was incorporated into liposomes with high efficiency (97%) and the liposomes were small (40 nm) and stable. Following intranasal delivery in rats, FAC-LIP significantly increased the iron content in the olfactory bulb, cerebral cortex, striatum, cerebellum and hippocampus, and was more efficient at doing so than FAC alone. No signs of apoptosis or abnormal cell morphology were observed in the brain following FAC-LIP administration, and there were no significant changes in the levels of SOD and MDA, except in the cerebellum and hippocampus. No obvious morphological changes were observed in lung epithelial cells or tracheal mucosa after nasal delivery, suggesting that the formulation was not overtly toxic. Conclusions In this study, nanoscale FAC-LIP proved an effective system delivering iron to the brain, with high encapsulation efficiency and low toxicity in rats. Our studies provide the foundation for more detailed investigations into the applications of niosomal nasal delivery of liposomal formulations of iron as a simple and safe therapy for iron deficiency anemia. Graphical abstract The diagrammatic sketch of “Nasal delivery of nanoliposome-encapsulated ferric ammonium citrate can increase the iron content of rat brain”. Nanoliposome-encapsulated ferric ammonium citrate (FAC-LIP) was successfully prepared and intranasal administration of FAC-LIP increased both the total iron contents and iron storage protein (FTL) expression in rat olfactory bulb, cerebral cortex, striatum and hippocampus, compared with those of FAC groups. Moreover, there was not overtly toxic affects to brain, lung epithelial cells and tracheal mucosa
Mitochondrial Ferritin Deletion Exacerbates β-Amyloid-Induced Neurotoxicity in Mice
Mitochondrial ferritin (FtMt) is a mitochondrial iron storage protein which protects mitochondria from iron-induced oxidative damage. Our previous studies indicate that FtMt attenuates β-amyloid- and 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. To explore the protective effects of FtMt on β-amyloid-induced memory impairment and neuronal apoptosis and the mechanisms involved, 10-month-old wild-type and Ftmt knockout mice were infused intracerebroventricularly (ICV) with Aβ25–35 to establish an Alzheimer’s disease model. Knockout of Ftmt significantly exacerbated Aβ25–35-induced learning and memory impairment. The Bcl-2/Bax ratio in mouse hippocampi was decreased and the levels of cleaved caspase-3 and PARP were increased. The number of neuronal cells undergoing apoptosis in the hippocampus was also increased in Ftmt knockout mice. In addition, the levels of L-ferritin and FPN1 in the hippocampus were raised, and the expression of TfR1 was decreased. Increased MDA levels were also detected in Ftmt knockout mice treated with Aβ25–35. In conclusion, this study demonstrated that the neurological impairment induced by Aβ25–35 was exacerbated in Ftmt knockout mice and that this may relate to increased levels of oxidative stress
MOESM2 of Nasal delivery of nanoliposome-encapsulated ferric ammonium citrate can increase the iron content of rat brain
Additional file 2: Figure S2. Levels of SOD and MDA in the brain 2 weeks after transnasal administration of LIP, FAC and FAC-LIP for 7 days. Data are presented as mean ± SD, n = 5, * P < 0.05 vs. LIP group, ** P < 0.01 vs. LIP group
MOESM3 of Nasal delivery of nanoliposome-encapsulated ferric ammonium citrate can increase the iron content of rat brain
Additional file 3: Figure S3. Nissl staining of brain tissues morphology 2 weeks after transnasal administration of LIP, FAC and FAC-LIP for 7 days. A: olfactory bulb, B: cerebral cortex, C: striatum, D: cerebellum, E: hippocampus, n = 3