6 research outputs found

    Fluorescence-Magnetism Functional EuS Nanocrystals with Controllable Morphologies for Dual Bioimaging

    No full text
    Multiple functions incorporated in one single component material offer important applications in biosystems. Here we prepared a divalent state of rare earth EuS nanocrystals (NCs), which provides luminescent and magnetic properties, using both 1-Dodecanethiol (DT) and oleylamine (OLA) as reducing agents. The resultant EuS NCs exhibit controllable shapes, uniform size, and bright luminescence with a quantum yield as high as 3.5%. OLA as a surface ligand plays an important role in tunable morphologies, such as nanowires, nanorods, nanospheres et al. Another attractive nature of the EuS NCs is their paramagnetism at room temperature. In order to expand the biological applications, the resultant EuS NCs were modified with amphiphilic block copolymer F127 and transferred from oil to water phase. The excellent biocompatibility of EuS NCs is demonstrated as well as preservation of their luminescence and paramagnetic properties. The EuS NCs offer multifunction and great advantages of bright luminescence, paramagnetic, controllable morphologies, and good biocompatibility promising applications in the field of simultaneous magnetic resonance and fluorescence bioimaging

    Nanoparticle Counting by Microscopic Digital Detection: Selective Quantitative Analysis of Exosomes via Surface-Anchored Nucleic Acid Amplification

    No full text
    Exosomes are nanosized vesicles secreted by cells, with a lipid bilayer membrane and protein and nucleic acid contents. Here, we present the first method for the selective and quantitative analysis of exosomes by digital detection integrated with nucleic acid-based amplification in a microchip. An external biocompatible anchor molecule conjugated with DNA oligonucleotides was anchored in the lipid bilayer membrane of exosomes via surface self-assembly for total exosome analysis. Then, specific antibody–DNA conjugates were applied to label selective exosomes among the total exosomes. The DNA-anchored exosomes were distributed into microchip chambers with one or fewer exosomes per chamber. The signal from the DNA on the exosomes was amplified by a rapid isothermal nucleic acid detection assay. A chamber with an exosome exhibited a positive signal and was recorded as 1, while a chamber without an exosome presented a negative signal and was recorded as 0. The 10100101 digital signals give the number of positive chambers. According to the Poisson distribution, the exosome stock concentration was calculated by the observed fraction of positive chambers. The findings showed that nanoscale particles can be digitally detected via DNA-mediated signal amplification in a microchip with simple microscopic settings. This approach can be integrated with multiple types of established nucleic acid assays and provides a versatile platform for the quantitative detection of various nanosomes, from extracellular vesicles such as exosomes and enveloped viruses to inorganic and organic nanoparticles, and it is expected to have broad applications in basic research areas as well as disease diagnosis and therapy

    Self-Sterilizing and Regeneratable Microchip for the Precise Capture and Recovery of Viable Circulating Tumor Cells from Patients with Cancer

    No full text
    Cancer cells metastasize and are transported in the bloodstream, easily reaching any site in the body through the blood circulation. A method designed to assess the number of circulating tumor cells (CTCs) should be validated as a clinical tool for predicting the response to therapy and monitoring the disease progression in patients with cancer. Although CTCs are detectable in many cases, they remain unavailable for clinic usage because of their high testing cost, tedious operation, and poor clinical relevance. Herein, we developed a regeneratable microchip for isolating CTCs, which is available for robust cell heterogeneity assays on-site without the need for a sterile environment. The ivy-like hierarchical roughened zinc oxide (ZnO) nanograss interface was synthesized and directly integrated into the microfluidic devices and enables effective CTC capture and flexible, nontoxic CTC release during incubation in a mildly acidic solution, thus enabling cellular and molecular analyses. The microchip can be regenerated and recycled to capture CTCs with the remaining ZnO without affecting the efficiency, even after countless cycles of cell release. Moreover, microbial infection is avoided during its storage, distribution, and even in the open space usage, which ideally appeals to the demands of point-of-care (POC) and home testing and meets to the requirements for blood examinations in undeveloped or resource-limited settings. Furthermore, the findings generated using this platform based on the cocktail of antiepithelial cell adhesion molecule and antivimentin antibodies indicate that CTC capture was more precise and reasonable for patients with advanced cancer

    Self-Sterilizing and Regeneratable Microchip for the Precise Capture and Recovery of Viable Circulating Tumor Cells from Patients with Cancer

    No full text
    Cancer cells metastasize and are transported in the bloodstream, easily reaching any site in the body through the blood circulation. A method designed to assess the number of circulating tumor cells (CTCs) should be validated as a clinical tool for predicting the response to therapy and monitoring the disease progression in patients with cancer. Although CTCs are detectable in many cases, they remain unavailable for clinic usage because of their high testing cost, tedious operation, and poor clinical relevance. Herein, we developed a regeneratable microchip for isolating CTCs, which is available for robust cell heterogeneity assays on-site without the need for a sterile environment. The ivy-like hierarchical roughened zinc oxide (ZnO) nanograss interface was synthesized and directly integrated into the microfluidic devices and enables effective CTC capture and flexible, nontoxic CTC release during incubation in a mildly acidic solution, thus enabling cellular and molecular analyses. The microchip can be regenerated and recycled to capture CTCs with the remaining ZnO without affecting the efficiency, even after countless cycles of cell release. Moreover, microbial infection is avoided during its storage, distribution, and even in the open space usage, which ideally appeals to the demands of point-of-care (POC) and home testing and meets to the requirements for blood examinations in undeveloped or resource-limited settings. Furthermore, the findings generated using this platform based on the cocktail of antiepithelial cell adhesion molecule and antivimentin antibodies indicate that CTC capture was more precise and reasonable for patients with advanced cancer

    Self-Sterilizing and Regeneratable Microchip for the Precise Capture and Recovery of Viable Circulating Tumor Cells from Patients with Cancer

    No full text
    Cancer cells metastasize and are transported in the bloodstream, easily reaching any site in the body through the blood circulation. A method designed to assess the number of circulating tumor cells (CTCs) should be validated as a clinical tool for predicting the response to therapy and monitoring the disease progression in patients with cancer. Although CTCs are detectable in many cases, they remain unavailable for clinic usage because of their high testing cost, tedious operation, and poor clinical relevance. Herein, we developed a regeneratable microchip for isolating CTCs, which is available for robust cell heterogeneity assays on-site without the need for a sterile environment. The ivy-like hierarchical roughened zinc oxide (ZnO) nanograss interface was synthesized and directly integrated into the microfluidic devices and enables effective CTC capture and flexible, nontoxic CTC release during incubation in a mildly acidic solution, thus enabling cellular and molecular analyses. The microchip can be regenerated and recycled to capture CTCs with the remaining ZnO without affecting the efficiency, even after countless cycles of cell release. Moreover, microbial infection is avoided during its storage, distribution, and even in the open space usage, which ideally appeals to the demands of point-of-care (POC) and home testing and meets to the requirements for blood examinations in undeveloped or resource-limited settings. Furthermore, the findings generated using this platform based on the cocktail of antiepithelial cell adhesion molecule and antivimentin antibodies indicate that CTC capture was more precise and reasonable for patients with advanced cancer

    Prevention of Cyanobacterial Blooms Using Nanosilica: A Biomineralization-Inspired Strategy

    No full text
    Cyanobacterial blooms represent a significant threat to global water resources because blooming cyanobacteria deplete oxygen and release cyanotoxins, which cause the mass death of aquatic organisms. In nature, a large biomass volume of cyanobacteria is a precondition for a bloom, and the cyanobacteria buoyancy is a key parameter for inducing the dense accumulation of cells on the water surface. Therefore, blooms will likely be curtailed if buoyancy is inhibited. Inspired by diatoms with naturally generated silica shells, we found that silica nanoparticles can be spontaneously incorporated onto cyanobacteria in the presence of poly­(diallyldimethylammonium chloride), a cationic polyelectrolyte that can simulate biosilicification proteins. The resulting cyanobacteria-SiO<sub>2</sub> complexes can remain sedimentary in water. This strategy significantly inhibited the photoautotrophic growth of the cyanobacteria and decreased their biomass accumulation, which could effectively suppress harmful bloom events. Consequently, several of the adverse consequences of cyanobacteria blooms in water bodies, including oxygen consumption and microcystin release, were significantly alleviated. Based on the above results, we propose that the silica nanoparticle treatment has the potential for use as an efficient strategy for preventing cyanobacteria blooms
    corecore