24 research outputs found

    Assessing Regional Ecosystem Conditions Using Geospatial Techniques—A Review

    No full text
    Ecosystem conditions at the regional level are critical factors for environmental management, public awareness, and land use decision making. Regional ecosystem conditions may be examined from the perspectives of ecosystem health, vulnerability, and security, as well as other conceptual frameworks. Vigor, organization, and resilience (VOR) and pressure–stress–response (PSR) are two commonly adopted conceptual models for indicator selection and organization. The analytical hierarchy process (AHP) is primarily used to determine model weights and indicator combinations. Although there have been many successful efforts in assessing regional ecosystems, they remain affected by a lack of spatially explicit data, weak integration of natural and human dimensions, and uncertain data quality and analyses. In the future, regional ecosystem condition assessments may be advanced by incorporating recent improvements in spatial big data and machine learning to create more operative indicators based on Earth observations and social metrics. The collaboration between ecologists, remote sensing scientists, data analysts, and scientists in other relevant disciplines is critical for the success of future assessments

    Fusion of Remote Sensing and Internet Data to Calculate Urban Floor Area Ratio

    No full text
    The floor area ratio is a comprehensive index that plays an important role in urban planning and sustainable development. Remote sensing data are widely used in floor area ratio calculations because they can produce both two-dimensional planar and three-dimensional stereo information on buildings. However, remote sensing is not adequate for calculating the number of floors in a building. In this paper, a simple and practical pixel-level model is established through defining a quantitative relationship among the floor area ratio, building density, and average number of floors (ANF). The floor area ratios are calculated by combining remote sensing data with publicly available Internet data. It incorporates supplemental map data and street-level views from Internet maps to confirm building types and the number of floors, thereby enabling more-accurate floor area ratio calculations. The proposed method is tested in the Tiantongyuan neighborhood, Changping District, Beijing, and the results show that it can accurately approximate the number of floors in buildings. Inaccuracies in the value of the floor area ratio were found to be primarily due to the uncertainties in building density calculations. After performing systematic error correction, the building density (BD) and floor area ratio were each calculated with the relative accuracy exceeding 90%. Moreover, the experiments verified that the fusion of internet map data with remote sensing data has innate advantages for floor area ratio calculations

    Spatiotemporal Variation of Karst Ecosystem Service Values and Its Correlation With Environmental Factors in Northwest Guangxi, China

    No full text
    In this investigation we analyzed the spatiotemporal variation of ecosystem service values (ESVs) and its correlation with numerous environmental factors (EFs) for the karst region of Northwest Guangxi, China, from 1985 to 2005 using remote sensing, geographic information systems (GIS) and statistical techniques. The results indicate that historically ESVs for this karst region decreased from 1985 (109.652 billion Yuan) to 1990 (88.789 billion Yuan) and then increased at the turn of the twenty-first century. However, the ESVs in both 2000 (103.384 billion Yuan) and 2005 (106.257 billion Yuan) never achieved the level recorded in 1985. The total of nutrient cycling, organic production and gas regulation combined were 72.69, 64.57, 70.18 and 72.10% of ESVs in 1985, 1990, 2000 and 2005, respectively. In contrast, the ESVs of water conservation, soil reservation, recreation and culture were determined to be relatively low contributing only 17.44, 23.82, 19.26 and 24.76% of total ESVs, respectively, during these four years. With regards to the spatial distribution of ESVs, larger values were recorded in the west and smaller ones recorded in the east. The most significant factors that were deemed to influence ESVs are annual rainfall, per capita cropland, slope and vegetation coverage. Annual rainfall and slope exert a negative force, whereas per capita cropland and vegetation coverage exert a positive force on ESVs. The results of the study would suggest that ecosystem conditions of this important karst region have been improved as the result of the implementation of rocky desertification control policies

    Eco-engineering controls vegetation trends in southwest China karst

    No full text
    The karst area in Yunnan-Guangxi-Guizhou region in southwest China is known for widespread rocky desertification but several studies report a greening trend since the year 2000. While the start of the greening trend seems to match with the implementation of ecological conservation projects, no statistical evidence on a relationship between vegetation greening and eco-engineering exists. Moreover, dominant factors influencing the spatial patterns of vegetation trends have rarely been investigated. Here we use six comprehensive factors representing the natural conditions and human activities of the study area, and several statistical models consistently show that eco-engineering explains large parts of the positive vegetation trends in the karst areas, while negative vegetation trends in non-karst areas of Yunnan were related with a decrease in rainfall. We further show that the interaction of eco-engineering with other factors leads to a heterogeneous pattern of different vegetation trends. Knowing and understanding these patterns is crucial when planning ecological restoration, especially in diverse landscapes like China karst and the methods can be reused in other restoration areas

    Spatio-Temporal Variation and Impact Factors for Vegetation Carbon Sequestration and Oxygen Production Based on Rocky Desertification Control in the Karst Region of Southwest China

    No full text
    The Grain to Green Program (GTGP) and eco-environmental emigration have been employed to alleviate poverty and control rocky desertification in the Southwest China Karst region. Carbon sequestration and oxygen production (CSOP) is used to indicate major ecological changes, because they involve complex processes of material circulation and energy flow. Using remote sensing images and weather records, the spatiotemporal variation of CSOP was analyzed in a typical karst region of northwest Guangxi, China, during 2000–2010 to determine the effects of the Chinese government’s ecological rehabilitation initiatives implemented in 1999. An increase with substantial annual change and a significant increase (20.94%, p < 0.05) in variation were found from 2000 to 2010. CSOP had a highly clustered distribution in 2010 and was correlated with precipitation and temperature (9.18% and 8.96%, respectively, p < 0.05). CSOP was significantly suppressed by human activities (p < 0.01, r = −0.102) but was consistent with the intensity of GTGP (43.80% positive). The power spectrum of CSOP was consistent with that of the gross domestic product. These results indicate that ecological services were improved by rocky desertification control in a typical karst region. The results may provide information to evaluate the efficiency of ecological reconstruction projects

    Microwave ablation shows similar survival outcomes compared with surgical resection for hepatocellular carcinoma between 3 and 5 cm

    No full text
    Background Microwave ablation (MWA) is a safe and effective locoregional ablation modality, but it is not clear whether the curative effect of MWA as to hepatocellular carcinoma (HCC) is comparable to that of surgical resection (SR). We aimed to compare the outcomes of MWA and SR for patients with HCC ranging from 3 to 5 cm. Methods 197 patients treated for HCC between 3 and 5 cm by MWA or SR were included from 2010 to 2017. Overall survival (OS), progression-free survival (PFS), complication and hospital stay of those patients were compared by using propensity score matching. The registration number of this clinical trial was ChiCTR2000033983. Results For patients with HCC between 3 and 5 cm, the 1-, 3-, and 5- years OS rates were 90.3%, 79.7%, and 65.5% in the MWA group, and 96.7%, 88.6%, and 71%% in the SR group, respectively (p = 0.457). The 1-, 3- and 5- years PFS rates were 63.6%, 36.8% and 32.7% in the MWA group, and 74.2%, 41.9% and 35.5% in the SR group, respectively (p = 0.397). The MWA group showed fewer complications (55% versus 78.8%, p = 0.041) and shorter hospital stays (8 versus 15 days, p < 0.001) compared with the SR group. Conclusion MWA showed similar survival outcomes compared with SR for HCCs ranging from 3 to 5 cm. However, it showed favorable results in terms of hospital stay and complication rate compared to SR

    Using the radial basis function network model to assess rocky desertification in northwest Guangxi, China

    No full text
    Abstract Karst rocky desertification is a progressive process of land degradation in karst regions in which soil is severely, or completely, eroded. This process may be caused by natural factors, such as geological structure, and population pressure leading to poor ecosystem health and lagging economic development. Karst rocky desertification is therefore a significant obstacle to sustainable development in southwest China. We applied a radial basis function network model to assess the risk of karst rocky desertification in northwest Guangxi, a typical karst region located in southwest China. Factors known to influence karst rocky desertification were evaluated using remote sensing and geographic information systems techniques to classify the 23 counties in the study area from low to extreme risk of karst rocky desertification. Counties with extreme or strong karst rocky desertification risk (43.48%, nearly half of the study area) were clustered in the north, central and southeast portions of the study area. Counties with low karst rocky desertification (30.43%) were located in the west, northeast and southwest of the study area. The spatial distribution of karst rocky desertification was moderately correlated to population density

    Using the Radial Basis Function Network Model to Assess Rocky Desertification in Northwest Guangxi, China

    No full text
    Karst rocky desertification is a progressive process of land degradation in karst regions in which soil is severely, or completely, eroded. This process may be caused by natural factors, such as geological structure, and population pressure leading to poor ecosystem health and lagging economic development. Karst rocky desertification is therefore a significant obstacle to sustainable development in southwest China. We applied a radial basis function network model to assess the risk of karst rocky desertification in northwest Guangxi, a typical karst region located in southwest China. Factors known to influence karst rocky desertification were evaluated using remote sensing and geographic information systems techniques to classify the 23 counties in the study area from low to extreme risk of karst rocky desertification. Counties with extreme or strong karst rocky desertification risk (43.48%, nearly half of the study area) were clustered in the north, central and southeast portions of the study area. Counties with low karst rocky desertification (30.43%) were located in the west, northeast and southwest of the study area. The spatial distribution of karst rocky desertification was moderately correlated to population density
    corecore