33 research outputs found

    Flutter analysis for bridge decks using Lattice Boltzmann Method

    Get PDF
    Aiming at using the Lattice Boltzmann Method for flutter analysis of the bridge decks, a fluid- structure interaction algorithm is developed  within the framework of multiple –relaxation- time Lattice Boltzmann  Method. In the present algorithm, the unsteady fluid dynamics  is computed by the extended two-dimensional Lattice Boltzmann Method by incorporating the dynamic Smagorinsky subgrid scale  model, while the structure is modelled by an elastically suspended rigid body and its dynamic analysis is performed by using a Runge–Kutta method. A staggered coupling strategy is adopted to couple the fluid solver and the structure solver. To demonstrate the applicability of the presented algorithm, flutter analyses of the Second Forth Road Bridge and the Guamá River Bridge are employed. The numerical results are compared with wind tunnel measurements. It is shown that the  presented algorithm has a good prediction for the flutter onset  velocities of the Forth Road Bridge and the Guamá River Bridge and thus indicates, to a certain extent, the applicability of the presented algorithm

    Arbuscular mycorrhizal fungal composition affects the growth and nutrient acquisition of two plants from a karst area

    Get PDF
    How the composition of the arbuscular mycorrhizal (AM) fungal community affects plant traits of different plant species in karst environments is poorly understood. Broussonetia papyrifera (a woody shrub) and Bidens pilosa (a herbaceous plant) growing in pots in limestone soil were inoculated with an AM fungus, either Funneliformis mosseae (FM), Diversispora versiformis (DV) or Glomus diaphanum (GD) or with an inoculum mixture of all three AM fungi (bn). B. papyrifera and B. pilosa seedlings inoculated with AM fungi showed a significant increase in biomass and nitrogen and phosphorus acquisition compared with the controls, which lacked mycorrhiza. Mixed fungal inoculations significantly enhanced biomass and nitrogen and phosphorus acquisition by B. papyrifera seedlings compared with single fungal inoculations. Nitrogen and phosphorus acquisition by B. papyrifera mycorrhizal seedlings was significantly greater than that of B. pilosa mycorrhizal seedlings. Fungal composition significantly influenced the mycorrhizal benefits of biomass and phosphorus acquisition and mixed fungal inoculations enhanced nitrogen acquisition. Plant species significantly affected nitrogen acquisition but did not have an effect on biomass and phosphorus benefits. We concluded that AM fungal associations increased plant growth and nutrient absorption and that in general a mixed inoculation of AM fungi enhanced biomass and nutrient acquisition more than a single AM fungal inoculation. In addition, a mycorrhizal association was more beneficial for B. papyrifera seedlings in terms of biomass and nutrient acquisition than for B. pilosa seedlings

    Hydrothermal Preparation of Ag/Ag1.69Sb2.27O6.25 Sesame-Hollow-Ball-Type Nanocomposites: The Formation Mechanism of Metallic Ag in the Ag-H2O System at 400 K

    No full text
    Ag/Ag1.69Sb2.27O6.25 sesame-hollow-ball-type nanocomposites were prepared via a facile one-step hydrothermal method at 400 K. Power X-ray diffraction analysis shows that all diffraction peaks were well consistent with JCPDS card no: 89-6552 of Ag1.69Sb2.27O6.25. Scanning electron microscopy and high-resolution transmission electron microscopy images of the composites indicate that some smaller metallic Ag particles with size∼18.3 nm uniformly dense on the surface of Ag1.69Sb2.27O6.25 hollow nanospheres with a mean size of about 170 nm, producing Ag/Ag1.69Sb2.27O6.25 hollow-sesame-ball nanocomposites. The surface chemical state of Ag/Ag1.69Sb2.27O6.25 is investigated by XPS, and all peaks of Ag 3d, O 1s, and Sb 3d show their different chemical states. The BET surface area of the sample is 7.268 m2/g, and the pore sizes of nanocomposites are more than 5 nm. The light absorption property of as-prepared materials is studied by UV-vis/DRS, and the adsorption band is located at 445 nm, and the estimated energy band gap (Eg) is 2.55 eV. The calculated partial φ-pH diagrams in the Ag-H2O system at 400 K predict that the Ag+ ion can react with H2 to form metallic Ag

    Arbuscular Mycorrhizal Fungal Composition Affects the Growth and Nutrient Acquisition of Two Plants from a Karst Area

    No full text
    How the composition of the arbuscular mycorrhizal (AM) fungal community affects plant traits of different plant species in karst environments is poorly understood. Broussonetia papyrifera (a woody shrub) and Bidens pilosa (a herbaceous plant) growing in pots in limestone soil were inoculated with an AM fungus, either Funneliformis mosseae (FM), Diversispora versiformis (DV) or Glomus diaphanum (GD) or with an inoculum mixture of all three AM fungi (bn). B. papyrifera and B. pilosa seedlings inoculated with AM fungi showed a significant increase in biomass and nitrogen and phosphorus acquisition compared with the controls, which lacked mycorrhiza. Mixed fungal inoculations significantly enhanced biomass and nitrogen and phosphorus acquisition by B. papyrifera seedlings compared with single fungal inoculations. Nitrogen and phosphorus acquisition by B. papyrifera mycorrhizal seedlings was significantly greater than that of B. pilosa mycorrhizal seedlings. Fungal composition significantly influenced the mycorrhizal benefits of biomass and phosphorus acquisition and mixed fungal inoculations enhanced nitrogen acquisition. Plant species significantly affected nitrogen acquisition but did not have an effect on biomass and phosphorus benefits. We concluded that AM fungal associations increased plant growth and nutrient absorption and that in general a mixed inoculation of AM fungi enhanced biomass and nutrient acquisition more than a single AM fungal inoculation. In addition, a mycorrhizal association was more beneficial for B. papyrifera seedlings in terms of biomass and nutrient acquisition than for B. pilosa seedlings

    Research for reducing the Minimum Miscible Pressure of crude oil and carbon dioxide by injecting citric acid isobutyl ester

    No full text
    Carbon dioxide miscible flooding has become one of the important technologies for improving oil recovery. The Minimum Miscible Pressure (MMP) is the key parameter to realize miscible flooding. As the MMP in the research area is higher than the formation fracture pressure, miscible flooding cannot be formed. To address this problem, it is necessary to find a way to reduce the MMP. Citric acid isobutyl ester is chosen to reduce the MMP of carbon dioxide and crude oil in this research. The effect of citric acid isobutyl ester on reducing the MMP was measured by the method of long-slim-tube displacement experiment. The experiment results show that the MMP is 29.6 MPa and can be obviously reduced by injecting the slug of citric acid isobutyl ester. The MMP could decrease gradually with constantly adding the injected slug of citric acid isobutyl ester, but the decrease becomes smaller and smaller. The optimum injected slug size of the chemical reagent is 0.003 PV. Under the condition of the slug size, the MMP is reduced to 23.5 MPa and the reduction is 6.1 MPa

    Effect of H2 on Blast Furnace Ironmaking: A Review

    No full text
    Under the background of “carbon peaking” and “carbon neutralization”, the green transformation of iron and steel enterprises is imminent. The hydrogen-rich smelting technology of blast furnaces is very important for reducing energy consumption and CO2 emission in ironmaking systems, and it is one of the important directions of green and low-carbon development of iron and steel enterprises. In this paper, the research status of the thermal state, reduction mechanism of iron-bearing burden, coke degradation behavior, and formation of the cohesive zone in various areas of blast furnace after hydrogen-rich smelting is summarized, which can make a more clear and comprehensive understanding for the effect of H2 on blast furnace ironmaking. Meanwhile, based on the current research situation, it is proposed that the following aspects should be further studied in the hydrogen-rich smelting of blast furnaces: (1) the utilization rate of hydrogen and degree of substitution for direct reduction, (2) combustion behavior of fuel in raceway, (3) control of gas flow distribution in the blast furnace, (4) operation optimization of the blast furnace

    <i>V</i><sub>s30</sub> Prediction Models Based on Measured Shear-Wave Velocities in Tangshan, China

    No full text
    Vs30 (equivalent shear-wave velocity of soil layers within a depth of 30 m underground) is widely used in the field of seismic engineering; however, due to the limitation of funds, time, measuring devices, and other factors, the depth for testing shear-wave velocity in an engineering site rarely reaches 30 m underground. Therefore, it is necessary to predict Vs30 effectively. We analyzed the existing models using 343 boreholes with depths greater than 30 m in Tangshan, China. It shows that the topographic slope method is not suitable for predicting Vs30 in Tangshan. The Boore (2011) model overestimates, while Boore (2004) underestimates Vs30 in Tangshan, while Junju Xie’s (2016) model has ideal prediction results. We propose three new models in this paper, including the bottom constant velocity (BCV) model, linear model, and conditional independent model. We find that the BCV model has limited prediction ability, and the linear model is more suitable when z ≤ 18 m, while the conditional independent model shows good performance under conditions where z > 18 m. We propose that the model can be accurately and effectively applied in Tangshan and other regions with low shear-wave velocity

    A contact-imaging based microfluidic cytometer with machine-learning for single-frame super-resolution processing

    No full text
    Lensless microfluidic imaging with super-resolution processing has become a promising solution to miniaturize the conventional flow cytometer for point-of-care applications. The previous multi-frame super-resolution processing system can improve resolution but has limited cell flow rate and hence low throughput when capturing multiple subpixel-shifted cell images. This paper introduces a single-frame super-resolution processing with on-line machine-learning for contact images of cells. A corresponding contact-imaging based microfluidic cytometer prototype is demonstrated for cell recognition and counting. Compared with commercial flow cytometer, less than 8% error is observed for absolute number of microbeads; and 0.10 coefficient of variation is observed for cell-ratio of mixed RBC and HepG2 cells in solution.Published versio

    Structure-Based Design and Synthesis of a New Phenylboronic-Modified Affinity Medium for Metalloprotease Purification

    No full text
    Metalloproteases are emerging as useful agents in the treatment of many diseases including arthritis, cancer, cardiovascular diseases, and fibrosis. Studies that could shed light on the metalloprotease pharmaceutical applications require the pure enzyme. Here, we reported the structure-based design and synthesis of the affinity medium for the efficient purification of metalloprotease using the 4-aminophenylboronic acid (4-APBA) as affinity ligand, which was coupled with Sepharose 6B via cyanuric chloride as spacer. The molecular docking analysis showed that the boron atom was interacting with the hydroxyl group of Ser176 residue, whereas the hydroxyl group of the boronic moiety is oriented toward Leu175 and His177 residues. In addition to the covalent bond between the boron atom and hydroxyl group of Ser176, the spacer between boronic acid derivatives and medium beads contributes to the formation of an enzyme-medium complex. With this synthesized medium, we developed and optimized a one-step purification procedure and applied it for the affinity purification of metalloproteases from three commercial enzyme products. The native metalloproteases were purified to high homogeneity with more than 95% purity. The novel purification method developed in this work provides new opportunities for scientific, industrial and pharmaceutical projects
    corecore