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 Aiming at using the Lattice Boltzmann Method for 

flutter analysis of the bridge decks, a fluid- 

structure interaction algorithm is developed within 

the framework of multiple –relaxation- time Lattice 

Boltzmann Method. In the present algorithm, the 

unsteady fluid dynamics is computed by the 

extended two-dimensional Lattice Boltzmann 

Method by incorporating the dynamic Smagorinsky 

subgrid scale model, while the structure is 

modelled by an elastically suspended rigid body 

and its dynamic analysis is performed by using a 

Runge–Kutta method. A staggered coupling 

strategy is adopted to couple the fluid solver and 

the structure solver. To demonstrate the 

applicability of the presented algorithm, flutter 

analyses of the Second Forth Road Bridge and the 

Guamá River Bridge are employed. The numerical 

results are compared with wind tunnel 

measurements. It is shown that the presented 

algorithm has a good prediction for the flutter 

onset velocities of the Forth Road Bridge and the 

Guamá River Bridge and thus indicates, to a 

certain extent, the applicability of the presented 

algorithm. 
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1. Introduction 

 

 

The modern long-span bridges have become more 

flexible and slender, and thus more susceptible to a 

variety of wind-induced vibrations. Among all 

wind-induced structural vibrations, flutter is one of 

the most important aerodynamic instabilities 

observed in bridge structures, as it may result in 

catastrophic structural failure [1]. Therefore, flutter 

instability is a major concern in the design of 

modern long-span bridges. 

Flutter analysis was first treated by means of 

experimental studies using boundary layer wind 

tunnels. Recently, with advances and improvements 

in computational power and the area of 

computational fluid dynamics (CFD), numerical 

simulation has become a very attractive way to 

investigate bridge aeroelastic instability, and several 

computational fluid dynamics (CFD) algorithms 

have been developed to address these needs. 

Robertson et al. [2] used a 2D hp/Spectral fluid 
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solver to investigate the fluid-structure interaction 

(FSI) of a bridge deck in a cross wind. The study 

has shown a detailed investigation on prediction 

techniques of the flutter onset velocity using the 

free oscillation simulations and the analytical, semi-

analytical methods, respectively. The predicted 

flutter onset velocity was found to be in good 

agreement with the experimental results. Frandsen 

[3] approached the fluid-structure interaction 

problems using a finite element procedure to predict 

the aeroelastic behavior of long-span bridges. 

Despite a laminar flow assumption, the finite 

element procedure predicted that a flutter onset 

velocity will be in good agreement with wind tunnel 

experiments. Badia and Codina [4] presented a 

fluid-structure iterative algorithm using pressure 

segregation methods. They reported that the method 

showed good convergence behaviour for aeroelastic 

simulation of the bridges. However, the computed 

flutter onset velocity of 55 m/s was vastly 

underestimated compared with the 65–70 m/s 

obtained from wind tunnel tests. Braun et al. [5] 

employed an explicit two-step Taylor-Galerkin 

method with an Arbitrary Lagrangean-Eulerian 

description for solving the flow around oscillating 

bridge sections to predict the flutter critical 

velocity. The simulated results compared well with 

the experimental results. Sarkic et al. [6] applied 

two dimensional (2D) Unsteady Reynolds-Averaged 

Navier–Stokes method with k   SST turbulence 

model to numerical simulations of the static forces 

and flutter derivatives for asymmetric bridge deck 

section. A similar numerical approach was also 

employed by Miranda et al. [7] and Brusiani et al. 

[8] to perform the aerodynamic analysis of the 

bridge. Recently, Farsani et al. [9] utilized the grid 

free discrete vortex method for determining the 

flutter characteristics of a box girder section. Other 

researchers, such as Selvam et al. [10, 11], Sarwar 

et al. [12] and Mannini et al. [13], also paid much 

attention to this subject. Many existing fluid-

structure interaction algorithms are developed based 

on the finite volume method and finite element 

method. Although these algorithms can be 

employed to simulate wind-structure interaction 

problems, they may not be computationally 

effective when the large movements of the structure 

are present due to intensive computations involved 

in the continuous generation of new meshes to 

circumvent severe mesh distortion near the fluid-

structure interface. 

In recent years, the Lattice Boltzmann Method 

(LBM) [14, 15], as an accurate and efficient 

numerical approach, has gained a fame amongst the 

community of computational fluid dynamics. 

Compared with traditional computational fluid 

dynamics methods (for instance, finite volume 

method and finite element method), Lattice 

Boltzmann Method has many distinct advantages, 

such as simplicity of programming, favorable 

parallel-computing structure and capability in 

dealing with complex geometries. Especially the use 

of an Eulerian grid to represent the flow field makes 

Lattice Boltzmann Method an ideal numerical tool 

for avoiding mesh distortion inherent in various 

finite element or finite volume-based techniques for 

fluid-structure interaction simulation. Substantial 

efforts have been devoted to fluid-structure 

interaction based on Lattice Boltzmann Method. 

Garcia et al. [16] presented a method for the fluid-

structure interaction by a hybrid approach that uses 

Lattice Boltzmann Method for the fluid dynamics 

analysis and fixed-grid finite element method for 

the structural analysis. De Rosis et al. [17] 

investigated the interaction of fluid flow with 

flexibly supported rigid body. In their algorithm, 

fluid dynamics was computed by Lattice Boltzmann 

Method, while the structure dynamic analysis was 

performed using the Time Discontinuous Galerkin 

(TDG) method. More recently the authors 

developed a acoupled lattice Boltzmann-finite 

element approach with the immersed boundary 

method to implement aeroelastic study of flexible 

flapping wings [18]. In addition, an arbitrary 

Lagrangian–Eulerian approach for the simulation of 

immersed moving solids with the BGK-Lattice 

Boltzmann Method was proposed in [19]. However, 

these methods cannot be used for wind-structure 

interaction simulation. Because the wind fields are 

typical high Reynolds flows while Lattice 

Boltzmann Method is developed for laminar flows 

at low Reynolds numbers.  

The objective of this work is to investigate the use 

of Lattice Boltzmann Method to predict the flutter 

onset velocity of the bridge. In this paper, a fluid-

structure interaction algorithm will be developed 

based on the extended multiple – relaxation - time 

Lattice Boltzmann Method (MRT-LBM) [20]. 

Fluid-structure interaction is considered as a rigid 

body mounted on the wind fields with elastic 

restrains. The unsteady wind field past the bridge 

decks at high Reynolds number is solved by large 



Engineering Review, Vol. 35, Issue 3, 223-237, 2015.  225 
______________________________________________________________________________________________________________________ 

 

eddy simulation within the framework of multiple- 

relaxation- time Lattice Boltzmann Method on a 

fixed grid. The structure can move on the grid and 

its dynamic analysis is accomplished using Runge–

Kutta method. The coupling between fluid and 

structure is performed applying the interpolated 

bounce-back (IBB) scheme [21] and a refill 

procedure at the interface. In order to validate the 

present computational scheme, we apply it to flutter 

analysis of the Second Forth Road Bridge and the 

Guama River Bridge. 
 

2. Numerical methods 
 

2.1 Fluid solver 

 

2.1.1 MRT-LBM 

 

Among various Lattice Boltzmann Methods, the 

LBGK-Lattice Boltzmann Method is the most 

widely used one due to its simplicity. However, the 

numerical instability may appear in the LBGK-

Lattice Boltzmann Method because it uses single 

relaxation time collision operator [22]. The 

deficiency in this method can be overcome with the 

use of the Lattice Boltzmann model using multiple 

relaxation time collision operator [20], and 

therefore, we use the multiple relaxation time 

Lattice Boltzmann Method to simulate the high 

Reynolds number flows past the bridge decks . 

The Lattice Boltzmann Method views fluids as a 

group of discrete particles residing on a discrete 

lattice. The description of these particles is made by 

a particle distribution function  ,
k

f x t , which 

indicates the particle amount moving with the ith 

lattice velocity 
kc  at position x  and time t . In 

multiple – relaxation - time Lattice Boltzmann 

Method, the equation for the time evolution of 
k

f  is 

[23]:  

 

   

   1

, ,

, , ,

k

eq

t t t t

t t


     

   

f c f

M SM f f

x x

x x
  (1) 

                             

where,  ,
eq

tf x is the equilibrium distribution 

function of  , tf x , t  is the time step, M is the 

transformation matrix, S is a diagonal relaxation 

matrix.                                                                                                                   

For simulating two-dimensional incompressible 

flows, the two-dimensional nine-velocity lattice 

model (D2Q9) (see Fig. 1) is used to recover the 

Navier–Stokes equations at the macroscopic level. 

For the D2Q9 model, the discrete velocity set is 

given as: 
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where, x tc     is the lattice speed and x is the 

lattice spacing. 

 

 
 

(a) A standard lattice of LBM 
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(b) D2Q9 model. 

 

Figure 1. Discretization of LBM and D2Q9 model. 

 

The equilibrium function  ,
eq

tf x  for each discrete 

velocity 
k

c  reads: 
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where, 
k

w is the weight coefficient, and given by 

0
4 / 9w  ,

1,2,3,4
1 / 9w  , and 

5,6,7 ,8
1 / 36w  .   and u  



226                                                                                                      L. Ketong et al.: Flutter analysis for bridge decks… 
______________________________________________________________________________________________________________________ 

 

are the macroscopic fluid density and velocity, and 

can be respectively calculated using: 

 
8

0

,
k

k

f


                                     (4) 
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k

k
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The pressure p  can be obtained by: 

 

,
s

p c                                      (6) 

 

where, 3sc c  is the sound speed.  

In multiple – relaxation - time Lattice Boltzmann 

Method, the transformation matrix M  transforms 

 , tf x  and  ,
eq

tf x  in the discrete velocity space into 

the moment space with  , tm Mf x and 

 ,
eq eq

tm Mf x , where  , tm x  is the density 

distribution function in the moment space. 

 ,
eq

tm x is the equilibrium distribution function of 

 , tm x . In D2Q9 model, the distribution functions 

in moment space are given by: 
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where,   is related to the square of the energy e , 

x
j  and 

y
j  are the mass flux in two directions, 

x
q  

and 
y

q  correspond to the energy flux in two 

directions, and 
xx

p and
yy

p correspond to the 

diagonal and off-diagonal component of the viscous 

stress tensor. 

The equilibrium distribution functions in 

moment space are defined as: 

 

 0 1 2 3 4 5 6 7 8
, , , , , , , ,

T
eq eq eq eq eq eq eq eq eq eq

m m m m m m m m mm        (9) 

 

where,
0

eq

m  ,  2 2

1
2 3

eq

x y
m j j    ,  2 2

2
3

eq

x y
m j j   ,

3 4

eq eq

x
m m j  ,

5 6

eq eq

y
m m j  ,

2 2

7

eq

x y
m j j  ,

8

eq

x y
m j j ,

eq

x x i ix

i

j u f c  ,
eq

y y i iy

i

j u f c  . 

 

The diagonal matrix S  of relaxation rates 
k

s is 

given by: 

 

 
0 1 2 3 4 5 6 7 8
, , , , , , , , .diag s s s s s s s s sS            (10) 

 

The relaxation rates 
0

s ,
3

s and 
5

s  are arbitrary, and 

are set to 0 in the following simulations. The 

relaxation rate
1

s is related to the bulk viscosity  , 

namely,  
1

1 1 2 6s   . In this study, the 

relaxation rates
1 2 4 6

s s s s   =1.1 are used. 

7
s and

8
s are related to kinematic viscosity  , 

namely, 

 

      7 8
2 6 1 .s s                              (11) 

 

The evolution process of multiple- relaxation- time 

Lattice Boltzmann Method consists of two essential 

steps, i.e., collision and streaming, to reveal the 

flow phenomena. Unlike the BGK-Lattice 

Boltzmann Method, the collision sub-step of 

multiple- relaxation - time Lattice Boltzmann 

Method is performed in moment space: 

 

        1
, , , , .eq

k k
f t f t t t
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  M S m mx x x x  (12) 

 

The streaming of multiple- relaxation- time Lattice 

Boltzmann Method is still executed in velocity 

space 

 

   , , ,
k k k
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where,  ,
k

f tx denotes the post-collision state of the 

particle distribution function. 

 

2.1.2 MRT-LBM for simulating turbulent flows 

 

 The standard Lattice Boltzmann Method is 

developed for laminar flows at low Reynolds 

numbers. In order to simulate the turbulent flows 

past the bridge decks with the Lattice Boltzmann 

Method, the basic Lattice Boltzmann Method needs 

to be extended. In this study, large eddy simulation 

with dynamic Smagorinsky subgrid scale model is 

used for the turbulence simulation. The main idea of 

large-eddy simulation is that the large spatial-scale 

turbulent eddies are directly resolved, while the 

smaller-scale eddies are modeled by subgrid scale 

model. The separation of these scales can be 

achieved by filtering the Lattice Boltzmann 

governing equations. Following this concept, the 

filtered multiple relaxation time Lattice Boltzmann 

equation can be expressed as: 
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where, f and
eq

f are the distribution function and the 

equilibrium distribution function at the resolved 

scale, respectively. This equation is exactly the 

same form as the evolution equation of multiple – 

relaxation - time Lattice Boltzmann Method 

(Equation (1)), but the particle functions are 

replaced by their filtered values. In addition, the 

turbulence eddy viscosity 
t

  is introduced to model 

the unresolved scale motion. Hence, the total 

viscosity of the fluid equals the sum of the physical 

viscosity   and the eddy viscosity 
t

  

 

                         
*

.
t
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Accordingly,
*

S in Eq. (1) is given by: 
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where, the relaxation rates 
0 1 2 3 4 5 6
, , , , , ,s s s s s s s are 

the same as values in S . 

In the dynamic Smagorinsky subgrid scale model 

[24], the turbulence eddy viscosity 
t

  can be 

determined as: 

 

                       
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where, C is the model coefficient,  represents the 

lattice spacing,   2
ij i j j i

u x u x     S  is the strain 

rate tensor, 2
ij ij

S S S . In LBM, instead of the 

standard finite-difference based formulation the 

strain rate tensor can be computed directly from 

non-equilibrium moments of the particle 

distribution function: 
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
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In this paper, the model coefficient is estimated by 

means of a dynamic procedure proposed by 

Premnath et al. in [25]. Once the total viscosity has 

been determined from Equation (16), large eddy 

simulation with dynamic Smagorinsky subgrid scale 

model can be performed within the framework of 

multiple-relaxation-time Lattice Boltzmann method 

by calculating the relaxation rates 
*

7
s  and

*

8
s  at each 

time step. 

 

2.2 Structure solver 

 

 

 

Figure 2. Two-dimensional rigid body model. 

 

For the numerical aeroelastic analysis of bridges, 

the 3-dimensional problem is usually reduced to a 2-

dimensional problem. In this paper, the structure is 

modelled using a rigid-body undergoing rotational 

and vertical motion in wind fields. As shown in Fig. 

2, the rigid body is assumed to be mounted on a 

system composed of elastic springs and dashpots 

and its equation of motion is expressed by 
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  Mu Cu Ku F,                    (19) 

 

where,  ,diag m I


M ,  ,
h

diag c c


C ,  ,
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diag k k


K ; 

m , I

,

h
c , c


,

h
k , k


are the system mass, moment of 

inertia about the elastic axis, structural damping and 

stiffness in the vertical and rotational directions, 

respectively;  ,
T

y u is the displacement vector, 

y  and   are the vertical displacement and the 

rotational displacement, respectively;  ,F F
T

y 
F , 

where  F
y

t  and  F t


 indicate the components of 

the resultant force of the fluid on the structure 

surface in vertical direction and in rotational 

direction, their time-dependent schemes are given 

by 
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where,  is the fluid stress tensor, acting upon the 

boundary   of the structure, n  is outer unit 

normal, and r  is the distance from the center of 

mass. 

The above equation is solved explicitly using 

Runge–Kutta method, which is described by the 

following set of equations 
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where L , P , Q , R are given by 
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2.3 Fluid-structure coupling 

 

In the present fluid-structure interaction algorithm, 

the whole computational domain is subdivided by 

the fixed-grid of Lattice Boltzmann Method and 

identified as fluid domain and solid domain. The 

fluid solver is performed on the fluid domain. The 

position of the structure is continuously updated in 

the grid with the movement of the fluid-structure 

interface. As seen in Fig. 3 [17], the fluid and 

structure solvers are coupled through a staggered 

coupling strategy.  

 

 
Fluid 

solver

Structure 

solver

F

u

 
 

Figure 3. Schematic drawing of the coupling 

between fluid solver and structure solver 

[17]. 

 

At each time level, large-eddy simulation with 

dynamic Smagorinsky subgrid scale model is 

performed within the framework of multiple 

relaxation-time-Lattice Boltzmann Method to obtain 

the aerodynamic forces acting on the structure. The 

aerodynamic forces are then used as an input into 

the structure solver to predict the displacement of 

the structure at the next time level. This 

displacement is then employed to determine the 

position of the fluid-structure interface in the fluid 

solver. 

 

wr pr
l

r
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r
l
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Figure 4. Schematic drawing of IBB scheme. 

 

Lattice nodes adjacent to the solid obstacle do not 

participate to the standard collision-streaming 

process of Lattice Boltzmann Method as the 

immersed body acts as a wall for the motion of 

particles. In order to achieve the collision-streaming 

process of Lattice Boltzmann Method and to 

describe the motion of the structure, the IBB 
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scheme presented by Yu et al. [21] for tackling 

moving boundary, is adopted in the current work. 

As shown in Fig. 4, is the direction toward the 

immersed body,  denotes the opposite direction 

of ,
p

r is a solid node, 
l

r ,
l 

r ,
l 

r  are fluid nodes, and 

w
r  is a boundary node. Due to a lack of information 

about the neighboring node 
p

r , the particle 

distribution function  ,
l

f t t


 r  in the  - 

direction away from the solid surface cannot 

directly obtain from the streaming step of Lattice 

Boltzmann Method. The IBB scheme established a 

well-organized interpolation for the unknown 

distribution. According to the IBB scheme, the 

particle distribution functions at the solid surface in 

the  - and - directions can be obtained from the 

interpolation using the post-collision distribution 

function  ,
l

f t


r and  ,
l

f t
 r , and are written as [21]: 

 

       , 1 , , ,
w w l w l

f t t f t f t
        r r r         (21) 

   
2

, , 2 ,w

w w

s

f t t f t t w
c



  



     

u c
r r        (22) 

 

respectively, where
w l w l P

   r r r r ,
w

u is the 

velocity of the solid surface at the node
w

r . 

Once  ,
w

f t t


 r has been computed, 

 ,
l

f t t


 r can be reconstructed by means of the 

quadratic interpolation procedure as [21]: 

 

   

 
  

 

   

2
, ,

1 2

2
, ,

1 2
,

l w

w w

w w

l l

w w

f t t f t t

f t t f t t

 

  

    
   

 
     

   

r r

r r

         (23) 

 

Owing to the fixed nature of the grid of Lattice 

Boltzmann Method, some solid nodes (for example, 

node A in Fig. 5) enter the fluid domain as a 

consequence of the movement of the structure and 

should be activated. Some fluid nodes (for example, 

node B in Fig. 5) should be simultaneously 

deactivated since they are covered by the updated 

structure position [26, 27, 28]. In order to achieve 

fluid-structure interaction simulations, as illustrated 

in Fig. 5, a refill procedure is adopted to activate the 

new fluid node A and to inactivate the solid node B. 

In the procedure, the node A is activated by 

assigning a proper particle distribution function. 

Specifically, the particle distribution function 

 ,
k A

tf x  at node A is assigned by operating a linear 

extrapolation using the particle distribution function 

at node C and node D, that is, 

 

     , , ,2 .
k k kA D C

f t f t f t x x x            (24) 

 

For the node B, their particle distribution functions 

are simply set to zero. 
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(a) The structure position at time step t 
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(b) The structure position at time step t+1 

 

Figure 5. Schematic drawing of the refill procedure. 

 

3. Applications for flutter analysis 
 

In order to validate the present computational 

algorithm, we apply it to flutter analysis of the 

Second Forth Road Bridge and the Guamá River 

Bridge in this section. The critical flutter velocity 

for bridges can be determined using both forced 

motion and free motion of the bridge cross section 

in wind tunnel tests. In the forced motion method, 

the critical flutter velocity is obtained indirectly 

from the aerodynamic derivatives. While in the free 

motion method the critical flutter velocity can be 

observed directly. In the current work, the free 

vibration method for flutter analysis is carried out in 

virtual wind tunnel by means of the computational 
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techniques described above. In virtual wind tunnel, 

the bridge deck is allowed to oscillate freely in the 

wind fields under the specified governing structural 

parameters for various wind velocities. When the 

translational or rotational amplitude of the 

oscillations begins to steadily increase or reaches a 

defined critical displacement, the flutter instability 

appears, and then the critical velocity can be 

observed. 

 
3.1 Flutter analysis of the Second Forth Road 

Bridge 

 
In this section, we present the application of the 

algorithm described above in flutter analysis of the 

Second Forth Road Bridge. The flutter behavior of 

the Second Forth Road Bridge has been previously 

studied by means of numerical method and wind 

tunnel tests [2]. We compare our results with the 

numerical and experimental data in [2]. Fig. 6 

shows the bridge cross-section [2]. The structural 

data used in the analysis are summarized in Table 1 

[2].  
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Figure 6. Detail of the Second Forth Road Bridge 

section. 

 

Table 1. Mechanical properties of the Forth Road 

Bridge deck 

 

Characteristics Value 

Overall Width (B) 31.2 m 

Maximum Depth (D) 3.2 m 

Mass per unit length 17300 kg/m 

Mass moment of inertia 
2130000 

kgm2/m 

Vertical natural frequency 0.174 Hz 

Angular natural frequency 0.4 Hz 

Vertical damping ratio 1.9% 

Torsional damping ratio 0.9% 
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Figure 7. Flow geometry, computational domain 

and boundary conditions. 

 

The analysis domain is depicted in Fig. 7. In order 

to eliminate the effect of the boundaries, the elastic 

centre of the bridge deck is located far enough from 

the boundaries of the flow field. The elastic centre 

of the bridge deck is 5B away from the inlet while it 

is located 4B far from the upper and lower 

boundaries in our simulation. Turbulence length 

scales in the vicinity of the immersed body are 

generally smaller than those at locations far away 

from the body and therefore require a finer grid to 

adequately resolve them. Due to a high 

computational cost associated with the use of such 

fine grids throughout the computational domain, a 

multi-block grid refinement scheme, which provides 

a way to satisfy different resolution requirement in 

the near wall region and the far field and reduces 

the memory requirement and computational time, is 

used in this study. In this method, flow field is 

divided into blocks. In each block, the grid spacing 

is uniform with desired resolution. The different 

grid size blocks are connected only thorough 

interface. An accurate interface treatment technique 

between neighboring blocks is adopted in the 

present study in accordance with Yu et al. [29]. In 

our simulation, two grid sizes are used with the 

coarse-to-fine lattice spacing ratio m= / 8
c f

    

(superscripts c and f are used to represent variables 

on the coarse and fine blocks, respectively). As 

illustrated in Fig. 7, the fine-mesh block covers the 

area from 4B to 7B on x-axis and 4.5B to 5.5B on y-

axis, which is about 2% of the whole computational 

domain by area. There are 307200 fine grids, and 

235200 coarse grids with a total of about 542400 

grids in the entire domain. 

The boundary conditions for the simulations are set 

as follows. At the inlet, fluid with constant uniform 

velocity U  in x-direction is injected into the 

domain. The outlet boundary condition is chosen in 
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such a way that the velocity gradient in the direction 

normal to the outlet surface is zero. The top and the 

bottom boundaries are treated as solid walls with 

the free-slip condition. 

The flutter instability of the Second Forth Road 

Bridge is investigated by analyzing its structural 

response under wind action with four macroscopic 

wind velocity levels: 70, 80, 80.05 and 81. The 

Reynolds number is chosen to be 

5 6

Re = / 10 ~10UB   , where U is the inflow velocity 

and   is the kinematic viscosity so as to be 

consistent with the order of the Reynolds number in 

wind tunnel experiments [2]. Initially, the bridge 

deck remains fixed with zero angle of attack. After 

10000 time steps, the fluid forces acting on the body 

surface are computed, and then, the bridge deck was 

allowed to oscillate freely in the wind fields. 
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Figure 8. Vertical displacement of the Second Forth Road Bridge. 
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Figure 9. Rotational displacement of the Second Forth Road Bridge. 
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Figs. 8 and 9 display the vertical and rotational 

displacement time histories of the Second Forth 

Road Bridge for the different velocities, 

respectively. In Figs. 8 and 9, 
*

t is the non-

dimensionalized time and is defined as
*

/t tU B . 

From Figs. 8 and 9, it can be seen that the vertical 

and rotational displacement amplitudes grow up as 

the inflow velocity is increased. For U =70 m/s, the 

oscillation of the bridge deck quickly decrease for 

both heave and rotation. At a higher velocity U=80 

m/s, the oscillation has a slowly decreasing 

amplitude of the vertical and rotational 

displacements because aerodynamic damping, 

which acts to decrease the structural damping force, 

gets stronger. The action of structural damping is 

clearly observed in response to the bridge deck at 

these two wind velocity levels, where the 

aerodynamic damping is lower than structural 

damping and the structure is safe. At the velocity 

U=80.05 m/s, the oscillations maintain their 

magnitude. It suggests that aerodynamic damping is 

equal to structural damping at U=80.05 m/s and 

U=80.05 m/s is the critical velocity for the onset of 

flutter instability. In the case of the inflow velocity 

U=81 m/s, the structural response is characterized 

by a continuous increase in the amplitude of the 

vertical and rotational displacements. This reveals 

that, at U=81 m/s, total damping (structural 

damping + aerodynamic damping) becomes 

negative, leading to structural instability. In fact, the 

instability is vertical and rotational (see Figs. 8 (d) 

and 9 (d)). From the computed results illustrated in 

Figs. 8 and 9, it can be found that aerodynamic 

damping is dependent on the inflow velocity while 

the structural instability lies in aerodynamic 

damping. As the inflow velocity is increased, 

aerodynamic damping gets stronger. When 

aerodynamic damping is similar or greater than 

structural damping, the total damping becomes 

negative, leading to self-excited oscillation of the 

bridge deck and the flutter instability takes place. 
Fig. 10 shows the instantaneous pressure contours 

around the Second Forth Road Bridge deck during a 

typical cycle of the rotational oscillation. In 

snapshots (a), the flow is separated at the leading 

sharp corners in the upper and lower surface of the 

bridge deck. From snapshot (b) to (c), on the upper 

surface, the separated shear layer at the leading edge 

is enhanced by the rotational oscillation of the 

bridge deck, leading to an increase in the size of the 

negative pressure region. In this process, the 

separated shear layer at the leading edge on the 

lower surface is very small and little changed. The 

first three snapshots correspond to the creation of 

the separation vortex on the upper surface. From 

snapshot (c) to (e), the vortex travels downstream 

along the upper surface of the bridge deck. In this 

process, as the rotational amplitude becomes small, 

accordingly, the negative pressure region in the 

leeward becomes smaller. In snapshot (f) the 

separation vortex drifts to the wake and the flow is 

completely separated from the lower surface of the 

bridge deck. From snapshot (f) to (h), the negative 

pressure region on the lower surface becomes 

smaller and smaller and changes into positive in the 

leeward region. At the same time, on the upper 

surface, the size of the negative pressure region in 

the leeward is increasing with time, and in the end 

the upper surface is fully covered by the negative 

pressure. In succession, the next cycle restarts. In 

Fig. 10, the separation and attachment points of the 

shear separated layer can be found to oscillate 

forward and backward along the body surface as the 

bridge deck oscillates, which leads to pressure 

fluctuations. This phenomenon is responsible for 

the increase in the amplitudes of the structural 

response observed in Figs. 8 (d) and 9 (d). 

 

Table 2. Comparison of the flutter onset velocity of 

the Second Forth Road Bridge 

 

Source Critical velocity (m/s) 

The present result 80.05 

Numerical result [2] 77.5 

Experimental result 

[2] 
79.248 7.488 

 

Table 2 presents a comparison between the flutter 

onset velocity obtained by the present numerical 

simulation and the previously obtained numerical 

result and the experimental result [2]. It can be 

recognized that the present numerical result is 

reasonably in good agreement with the experimental 

data and the numerical value evaluated from 

aerodynamic derivatives. 

 

3.2 Flutter analysis of the Guamá River Bridge  

 

The flutter behavior of the Guamá River Bridge is 

studied as the second case to validate the present 

method. It has been previously studied by Rocha 

and Souza [30] in wind tunnel tests. The 
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geometrical features of the bridge deck are shown in 

Fig. 11 [5, 30]. All the simulations are performed at 

the Reynolds number (considering B=14.2 m as the 

characteristic dimension) Re=
5

2 10 , which is 

consistent with the Reynolds number in wind tunnel 

tests [30]. 
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(c) 

*
t =88.47                                                   (d) 

*
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*
t =89.36                                                  (f) 

*
t =89.68 

  
(g) 

*
t =90.01                                                 (h) 

*
t =90.35 

 

Figure 10. Instantaneous pressure contours around the Second Forth Road Bridge deck at eight chosen 

instants during one cycle of the rotational oscillation, U=81 m/s.
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The mechanical properties of the structure used in 

this paper are summarized in Table 3 [5, 30]. 

B=14.2

H
=

1.
3

 

Figure 11. Geometrical characteristics of Guamá 

River Bridge. 

 

Table 3. Mechanical properties of the structure 

 

Characteristics Value 

Overall Width (B) 14.2 m 

Mass per unit length 22513 kg/m 

Mass moment of inertia 566838 kgm2/m 

Vertical natural frequency 0.331 Hz 

Angular natural frequency 0.649 Hz 

Damping ratio 0.3% 

 

The arrangement of the computational domain is 

shown in Fig. 12. The elastic centre of the bridge 

deck is 5B away from the inlet while it is located 5B 

far from the upper and lower boundaries in our 

simulation.  In this case, three grid sizes are used 

with the coarse-to-medium lattice spacing ratio m=4 

and the medium-to-fine lattice spacing ratio m=4. 

As illustrated in Fig. 12, the fine-mesh block with 

lattice of 400 800 covers the area from 4.5B to 6.5B 

on x-axis and 4.5B to 5.5B on y-axis. The medium-

mesh block covers the area from 4B to 8B on x-axis 

and 4B to 6B on y-axis. There are 320000 fine 

grids, 60000 medium grids, and 101250 coarse grids 

with a total of about 481250 grids in the entire 

domain. The boundary conditions for the 

simulations are the same as that for the flow past the 

Second Forth Road Bridge.  

In wind tunnel tests, the critical velocity for the 

onset of flutter instability is evaluated from a 

critical value of the structural response, and a RMS 

(root mean square) angular displacement equal to 

0.5° is taken as the critical displacement pattern. 

This RMS value corresponds to a peak angular 

displacement of 1.5°. Thus the peak angular 

displacement of the bridge deck that is equal to 1.5° 

is defined as the critical condition for the onset of 

flutter instability in the present work. 
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Figure 12. Flow geometry, computational domain 

and boundary conditions. 

 

The flutter instability of the Guamá River Bridge is 

investigated by analyzing its structural response 

under wind action with four different wind velocity 

levels: 50, 56, 56.2 and 57. Initially, the bridge deck 

remains fixed with zero angle of attack. After 10000 

time steps, the fluid force acting on the body surface 

has been computed, and then, the bridge deck is 

allowed to oscillate freely in the wind fields. 

Fig. 13 displays the rotational displacement time 

histories of the bridge for the different velocities. 

The maximum amplitudes of the rotational 

displacement are determined and they are labelled 

in Fig. 13 as a black square. It can be seen from this 

Fig. that, the maximum amplitudes of the rotational 

displacement rise by increasing the inflow velocity 

At U=50 m/s and U=56 m/s, the maximum 

magnitudes of the oscillations are less than 1.5°. It 

suggests that at these two wind velocity levels, the 

flutter phenomenon has not occurred yet. At U=56.2 

m/s, the maximum magnitude of the oscillations is 

just larger than 1.5°. It indicates that U=56.2 m/s is 

the critical velocity for the onset of flutter 

instability. The experiment shows the onset velocity 

of flutter instability at U=55 m/s [27]. Thus, the 

present simulations successfully simulated the 

critical velocity for the onset of flutter instability.  

Fig. 14 illustrates the instantaneous pressure 

contours around Guamá River Bridge deck during 

one cycle of the rotational oscillation. As shown in 

this figure, the pressure distribution around Guamá 

River Bridge deck clearly shows the transient effect 

of the flow that is caused by the motion of the 

bridge deck. 
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Figure 13. Rotational displacement of Guamá River Bridge. 
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Figure 14. Instantaneous pressure contours around Guamá River Bridge deck at four chosen 

instants during one cycle of the rotational oscillation, U=56.2 m/s. 
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4. Conclusion 
 

This paper presents a staggered coupling algorithm 

for fluid–structure interaction analysis of 

incompressible flows and rigid structures. In this 

algorithm, the unsteady fluid field is solved by two-

dimensional multiple - relaxation - time Lattice 

Boltzmann Method with dynamic Smagorinsky 

subgrid scale model, while the rigid-body dynamic 

equation is solved by a Runge–Kutta method. 

Flutter analysis of the Second Forth Road Bridge 

and the Guamá River Bridge are performed by 

means of the presented computational algorithm. 

The results show that the flutter onset velocities of 

the Forth Road Bridge and the Guamá River Bridge 

are in good agreement with both experimental and 

other existing numerical results. In this sense, the 

presented algorithm is suitable for providing 

reliable results needed for flutter analysis and is 

expected to be a quite suitable method for dealing 

with the wind-structure interaction problems, such 

as vortex-induced vibrations and galloping of civil 

engineering structures. 
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