19 research outputs found

    Structural Analysis of Alkaline β-Mannanase from Alkaliphilic Bacillus sp. N16-5: Implications for Adaptation to Alkaline Conditions

    Get PDF
    Significant progress has been made in isolating novel alkaline β-mannanases, however, there is a paucity of information concerning the structural basis for alkaline tolerance displayed by these β-mannanases. We report the catalytic domain structure of an industrially important β-mannanase from the alkaliphilic Bacillus sp. N16-5 (BSP165 MAN) at a resolution of 1.6 Å. This enzyme, classified into subfamily 8 in glycosyl hydrolase family 5 (GH5), has a pH optimum of enzymatic activity at pH 9.5 and folds into a classic (β/α)8-barrel. In order to gain insight into molecular features for alkaline adaptation, we compared BSP165 MAN with previously reported GH5 β-mannanases. It was revealed that BSP165 MAN and other subfamily 8 β-mannanases have significantly increased hydrophobic and Arg residues content and decreased polar residues, comparing to β-mannanases of subfamily 7 or 10 in GH5 which display optimum activities at lower pH. Further, extensive structural comparisons show alkaline β-mannanases possess a set of distinctive features. Position and length of some helices, strands and loops of the TIM barrel structures are changed, which contributes, to a certain degree, to the distinctly different shaped (β/α)8-barrels, thus affecting the catalytic environment of these enzymes. The number of negatively charged residues is increased on the molecular surface, and fewer polar residues are exposed to the solvent. Two amino acid substitutions in the vicinity of the acid/base catalyst were proposed to be possibly responsible for the variation in pH optimum of these homologous enzymes in subfamily 8 of GH5, identified by sequence homology analysis and pKa calculations of the active site residues. Mutational analysis has proved that Gln91 and Glu226 are important for BSP165 MAN to function at high pH. These findings are proposed to be possible factors implicated in the alkaline adaptation of GH5 β-mannanases and will help to further understanding of alkaline adaptation mechanism

    Learning Block Group Spase Representation Combined with Convolutional Neural Networks for RGB-D Object Recognition

    No full text

    High-Precision Detection for Sandalwood Trees via Improved YOLOv5s and StyleGAN

    No full text
    An algorithm model based on computer vision is one of the critical technologies that are imperative for agriculture and forestry planting. In this paper, a vision algorithm model based on StyleGAN and improved YOLOv5s is proposed to detect sandalwood trees from unmanned aerial vehicle remote sensing data, and this model has excellent adaptability to complex environments. To enhance feature expression ability, a CA (coordinate attention) module with dimensional information is introduced, which can both capture target channel information and keep correlation information between long-range pixels. To improve the training speed and test accuracy, SIOU (structural similarity intersection over union) is proposed to replace the traditional loss function, whose direction matching degree between the prediction box and the real box is fully considered. To achieve the generalization ability of the model, StyleGAN is introduced to augment the remote sensing data of sandalwood trees and to improve the sample balance of different flight heights. The experimental results show that the average accuracy of sandalwood tree detection increased from 93% to 95.2% through YOLOv5s model improvement; then, on that basis, the accuracy increased by another 0.4% via data generation from the StyleGAN algorithm model, finally reaching 95.6%. Compared with the mainstream lightweight models YOLOv5-mobilenet, YOLOv5-ghost, YOLOXs, and YOLOv4-tiny, the accuracy of this method is 2.3%, 2.9%, 3.6%, and 6.6% higher, respectively. The size of the training sandalwood tree model is 14.5 Mb, and the detection time is 17.6 ms. Thus, the algorithm demonstrates the advantages of having high detection accuracy, a compact model size, and a rapid processing speed, making it suitable for integration into edge computing devices for on-site real-time monitoring

    The Sink Node Placement and Performance Implication in Mobile Sensor Networks

    No full text
    Mobile sensor networks are desirable in a variety of application scenarios, in which information collection is no doubt of great importance. In this paper, we present a mobile sensor network architecture consisting of a potentially large number of mobile sensors and a single or multiple stationary sink nodes for sensing information collection. We formulate a distinct coverage measurement problem in term of sensing information collection; we study the relevant performance and examine the effect from a variety of relevant factors through extensive simulations. We demonstrate that the performance is not only affected by the sensor mobility and the transmission range between mobile sensors and sink node(s), but also by the distribution of mobile sensors and the number and locations of sink nodes. Based on the observation and analysis, we also provide some preliminary understandings and implications for improving the information collection performance

    Crystallization and preliminary X-ray study of alkaline β-mannanase from the alkaliphilic Bacillus sp. N16-5

    No full text
    The catalytic domain of an alkaline mannanase from the alkaliphilic Bacillus sp. N16-5 was expressed in E. coli and purified. Crystallization and preliminarily X-ray crystallographic analysis were performed for the recombinant enzyme

    Comparison of satellite-based evapotranspiration models over terrestrial ecosystems in China

    No full text
    Evapotranspiration (ET) is a key component of terrestrial ecosystems because it links the hydrological, energy, and carbon cycles. Several satellite-based ET models have been developed for extrapolating local observations to regional and global scales, but recent studies have shown large model uncertainties in ET simulations. In this study, we compared eight ET models, including five empirical and three process-based models, with the objective of providing a reference for choosing and improving methods. The results showed that the eight models explained between 61 and 80% of the variability in ET at 23 eddy covariance towers in China and adjacent regions. The mean annual ET for all of China varied from 535 to 852 mm yr− 1 among the models. The interannual variability of yearly ET varied significantly between models during 1982–2009 because of different model structures and the dominant environmental factors employed. Our evaluation results showed that the parameters of the empirical methods may have different combination because the environmental factors of ET are not independent. Although the three process-based models showed high model performance across the validation sites, there were substantial differences among them in the temporal and spatial patterns of ET, the dominant environment factors and the energy partitioning schemes. The disagreement among current ET models highlights the need for further improvements and validation, which can be achieved by investigating model structures and examining the ET component estimates and the critical model parameters
    corecore