574 research outputs found

    Indoor Depth Completion with Boundary Consistency and Self-Attention

    Full text link
    Depth estimation features are helpful for 3D recognition. Commodity-grade depth cameras are able to capture depth and color image in real-time. However, glossy, transparent or distant surface cannot be scanned properly by the sensor. As a result, enhancement and restoration from sensing depth is an important task. Depth completion aims at filling the holes that sensors fail to detect, which is still a complex task for machine to learn. Traditional hand-tuned methods have reached their limits, while neural network based methods tend to copy and interpolate the output from surrounding depth values. This leads to blurred boundaries, and structures of the depth map are lost. Consequently, our main work is to design an end-to-end network improving completion depth maps while maintaining edge clarity. We utilize self-attention mechanism, previously used in image inpainting fields, to extract more useful information in each layer of convolution so that the complete depth map is enhanced. In addition, we propose boundary consistency concept to enhance the depth map quality and structure. Experimental results validate the effectiveness of our self-attention and boundary consistency schema, which outperforms previous state-of-the-art depth completion work on Matterport3D dataset. Our code is publicly available at https://github.com/patrickwu2/Depth-CompletionComment: Accepted by ICCVW (RLQ) 201

    Paeoniae alba Radix Promotes Peripheral Nerve Regeneration

    Get PDF
    The present study provides in vitro and in vivo evaluation of Paeoniae alba Radix (PR) on peripheral nerve regeneration. In the in vitro study, we found the PR caused a marked enhancement of the nerve growth factor-mediated neurite outgrowth from PC12 cells as well as their expression of growth associated protein 43 and synapsin I. In the in vivo study, silicone rubber chambers filled with the PR water extract were used to bridge a 10-mm sciatic nerve defect in rats. At the conclusion of 8 weeks, regenerated nerves in the PR groups, especially at 1.25 mg ml−1 had a higher rate of successful regeneration across the wide gap, relatively larger mean values of total nerve area, myelinated axon count and blood vessel number, and a significantly larger nerve conductive velocity compared to the control group (P  <  .05). These results suggest that the PR extract can be a potential nerve growth-promoting factor, being salutary in aiding the growth of injured peripheral nerve

    Prehemodialysis arteriovenous access creation is associated with better cardiovascular outcomes in patients receiving hemodialysis: a population-based cohort study

    Get PDF
    Background Cardiovascular (CV) disease contributes to nearly half of the mortalities in patients with end-stage renal disease. Patients who received prehemodialysis arteriovenous access (pre-HD AVA) creation had divergent CV outcomes. Methods We conducted a population-based cohort study by recruiting incident patients receiving HD from 2001 to 2012 from the Taiwan National Health Insurance Research Database. Patients’ characteristics, comorbidities, and medicines were analyzed. The primary outcome of interest was major adverse cardiovascular events (MACEs), defined as hospitalization due to acute myocardial infarction, stroke, or congestive heart failure (CHF) occurring within the first year of HD. Secondary outcomes included MACE-related mortality and all-cause mortality in the same follow-up period. Results The patients in the pre-HD AVA group were younger, had a lower burden of underlying diseases, were more likely to use erythropoiesis-stimulating agents but less likely to use renin–angiotensin–aldosterone system blockers. The patients with pre-HD AVA creation had a marginally lower rate of MACEs but a significant 35% lower rate of CHF hospitalization than those without creation (adjusted hazard ratio (HR) 0.65, 95% confidence interval (CI) [0.48–0.88]). In addition, the pre-HD AVA group exhibited an insignificantly lower rate of MACE-related mortality but a significantly 52% lower rate of all-cause mortality than the non-pre-HD AVA group (adjusted HR 0.48, 95% CI [0.39–0.59]). Sensitivity analyses obtained consistent results. Conclusions Pre-HD AVA creation is associated with a lower rate of CHF hospitalization and overall death in the first year of dialysis

    Thrombomodulin Regulates Keratinocyte Differentiation and Promotes Wound Healing

    Get PDF
    The membrane glycoprotein thrombomodulin (TM) has been implicated in keratinocyte differentiation and wound healing, but its specific function remains undetermined. The epidermis-specific TM knockout mice were generated to investigate the function of TM in these biological processes. Primary cultured keratinocytes obtained from TMlox/lox; K5-Cre mice, in which TM expression was abrogated, underwent abnormal differentiation in response to calcium induction. Poor epidermal differentiation, as evidenced by downregulation of the terminal differentiation markers loricrin and filaggrin, was observed in TMlox/lox; K5-Cre mice. Silencing TM expression in human epithelial cells impaired calcium-induced extracellular signal–regulated kinase pathway activation and subsequent keratinocyte differentiation. Compared with wild-type mice, the cell spreading area and wound closure rate were lower in keratinocytes from TMlox/lox; K5-Cre mice. In addition, the lower density of neovascularization and smaller area of hyperproliferative epithelium contributed to slower wound healing in TMlox/lox; K5-Cre mice than in wild-type mice. Local administration of recombinant TM (rTM) accelerated healing rates in the TM-null skin. These data suggest that TM has a critical role in skin differentiation and wound healing. Furthermore, rTM may hold therapeutic potential for the treatment of nonhealing chronic wounds

    Blockchain-Based Medical Record Management with Biofeedback Information

    Get PDF
    Blockchain is a new emerging technology of distributed databases, which guarantees the integrity, security and incorruptibility of data by means of the cryptography. Such features are suitable for secure and reliable data storage. This chapter investigates the blockchain-based architecture with applications to medical health record or biofeedback information management. This framework employs the smart contract to establish a medical record management system to ensure the privacy of patients. Moreover, the blockchain technique accelerates the medical record or information exchange such that the cost of human resource is significant reduced. All patients can manage their individual medical records and information easily in the different hospitals and clinics. They also have the privilege to deal with and authorize personal medical records in the proposed management framework

    Toward controllable and predictable synthesis of high-entropy alloy nanocrystals.

    Get PDF
    High-entropy alloy (HEA) nanocrystals have attracted extensive attention in catalysis. However, there are no effective strategies for synthesizing them in a controllable and predictable manner. With quinary HEA nanocrystals made of platinum-group metals as an example, we demonstrate that their structures with spatial compositions can be predicted by quantitatively knowing the reduction kinetics of metal precursors and entropy of mixing in the nanocrystals under dropwise addition of the mixing five-metal precursor solution. The time to reach a steady state for each precursor plays a pivotal role in determining the structures of HEA nanocrystals with homogeneous alloy and core-shell features. Compared to the commercial platinum/carbon and phase-separated counterparts, the dendritic HEA nanocrystals with a defect-rich surface show substantial enhancement in catalytic activity and durability toward both hydrogen evolution and oxidation. This quantitative study will lead to a paradigm shift in the design of HEA nanocrystals, pushing away from the trial-and-error approach

    Electromagnetic Wave Theory and Applications

    Get PDF
    Contains table of contents for Section 3 and reports on five research projects.U.S. Department of Transportation Contract DTRS-57-88-C-00078TTD13U.S. Department of Transportation Contract DTRS-57-88-C-00078TTD30Defense Advanced Research Projects Agency Contract MDA972-90-C-0021Digital Equipment CorporationIBM CorporationJoint Services Electronics Program Contract DAAL03-89-C-0001Joint Services Electronics Program Contract DAAL03-92-C-0001Schlumberger-Doll ResearchU.S. Navy - Office of Naval Research Grant N00014-90-J-1002U.S. Navy - Office of Naval Research Grant N00014-89-J-1019National Aeronautics and Space Administration Grant NAGW-1617National Aeronautics and Space Administration Grant 958461National Aeronautics and Space Administration Grant NAGW-1272U.S. Army Corp of Engineers Contract DACA39-87-K-0022U.S. Navy - Office of Naval Research Grant N00014-89-J-110

    Genome of the Asian Longhorned Beetle (\u3cem\u3eAnoplophora glabripennis\u3c/em\u3e), a Globally Significant Invasive Species, Reveals Key Functional and Evolutionary Innovations at the Beetle-Plant Interface

    Get PDF
    Background: Relatively little is known about the genomic basis and evolution of wood-feeding in beetles. We undertook genome sequencing and annotation, gene expression assays, studies of plant cell wall degrading enzymes, and other functional and comparative studies of the Asian longhorned beetle, Anoplophora glabripennis, a globally significant invasive species capable of inflicting severe feeding damage on many important tree species. Complementary studies of genes encoding enzymes involved in digestion of woody plant tissues or detoxification of plant allelochemicals were undertaken with the genomes of 14 additional insects, including the newly sequenced emerald ash borer and bull-headed dung beetle. Results: The Asian longhorned beetle genome encodes a uniquely diverse arsenal of enzymes that can degrade the main polysaccharide networks in plant cell walls, detoxify plant allelochemicals, and otherwise facilitate feeding on woody plants. It has the metabolic plasticity needed to feed on diverse plant species, contributing to its highly invasive nature. Large expansions of chemosensory genes involved in the reception of pheromones and plant kairomones are consistent with the complexity of chemical cues it uses to find host plants and mates. Conclusions: Amplification and functional divergence of genes associated with specialized feeding on plants, including genes originally obtained via horizontal gene transfer from fungi and bacteria, contributed to the addition, expansion, and enhancement of the metabolic repertoire of the Asian longhorned beetle, certain other phytophagous beetles, and to a lesser degree, other phytophagous insects. Our results thus begin to establish a genomic basis for the evolutionary success of beetles on plants
    corecore