1,422 research outputs found

    Fast tuning of superconducting microwave cavities

    Full text link
    Photons are fundamental excitations of the electromagnetic field and can be captured in cavities. For a given cavity with a certain size, the fundamental mode has a fixed frequency {\it f} which gives the photons a specific "color". The cavity also has a typical lifetime τ\tau, which results in a finite linewidth δ\delta{\it f}. If the size of the cavity is changed fast compared to τ\tau, and so that the frequency change Δ\Delta{\it f} ≫δ\gg \delta{\it f}, then it is possible to change the "color" of the captured photons. Here we demonstrate superconducting microwave cavities, with tunable effective lengths. The tuning is obtained by varying a Josephson inductance at one end of the cavity. We show data on four different samples and demonstrate tuning by several hundred linewidths in a time Δt≪τ\Delta t \ll \tau. Working in the few photon limit, we show that photons stored in the cavity at one frequency will leak out from the cavity with the new frequency after the detuning. The characteristics of the measured devices make them suitable for different applications such as dynamic coupling of qubits and parametric amplification.Comment: 2nd International Workshop on Solid-State Quantum Computing, June 2008, Taipei, Taiwa

    Remote sensing of Earth terrain

    Get PDF
    Remote sensing of earth terrain is examined. The layered random medium model is used to investigate the fully polarimetric scattering of electromagnetic waves from vegetation. The model is used to interpret the measured data for vegetation fields such as rice, wheat, or soybean over water or soil. Accurate calibration of polarimetric radar systems is essential for the polarimetric remote sensing of earth terrain. A polarimetric calibration algorithm using three arbitrary in-scene reflectors is developed. In the interpretation of active and passive microwave remote sensing data from the earth terrain, the random medium model was shown to be quite successful. A multivariate K-distribution is proposed to model the statistics of fully polarimetric radar returns from earth terrain. In the terrain cover classification using the synthetic aperture radar (SAR) images, the applications of the K-distribution model will provide better performance than the conventional Gaussian classifiers. The layered random medium model is used to study the polarimetric response of sea ice. Supervised and unsupervised classification procedures are also developed and applied to synthetic aperture radar polarimetric images in order to identify their various earth terrain components for more than two classes. These classification procedures were applied to San Francisco Bay and Traverse City SAR images

    Polarimetric clutter modeling: Theory and application

    Get PDF
    The two-layer anisotropic random medium model is used to investigate fully polarimetric scattering properties of earth terrain media. The polarization covariance matrices for the untilted and tilted uniaxial random medium are evaluated using the strong fluctuation theory and distorted Born approximation. In order to account for the azimuthal randomness in the growth direction of leaves in tree and grass fields, an averaging scheme over the azimuthal direction is also applied. It is found that characteristics of terrain clutter can be identified through the analysis of each element of the covariance matrix. Theoretical results are illustrated by the comparison with experimental data provided by MIT Lincoln Laboratory for tree and grass fields

    Polarimetric scattering from layered media with multiple species of scatterers

    Get PDF
    Geophysical media are usually heterogeneous and contain multiple species of scatterers. In this paper a model is presented to calculate effective permittivities and polarimetric backscattering coefficients of multispecies-layered media. The same physical description is consistently used in the derivation of both permittivities and scattering coefficients. The strong permittivity fluctuation theory is extended to account for the multiple species of scatterers with a general ellipsoidal shape whose orientations are randomly distributed. Under the distorted Born approximation, polarimetric scattering coefficients are obtained. These calculations are applicable to the special cases of spheroidal and spherical scatterers. The model is used to study effects of scatterer shapes and multispecies mixtures on polarimetric signatures of heterogeneous media. The multispecies model accounts for moisture content in scattering media such as snowpack in an ice sheet. The results indicate a high sensitivity of backscatter to moisture with a stronger dependence for drier snow and ice grain size is important to the backscatter. For frost-covered saline ice, model results for bare ice are compared with measured data at C band and then the frost flower formation is simulated with a layer of fanlike ice crystals including brine infiltration over a rough interface. The results with the frost cover suggest a significant increase in scattering coefficients and a polarimetric signature closer to isotropic characteristics compared to the thin saline ice case

    General Relativistic Effects in the Core Collapse Supernova Mechanism

    Get PDF
    We apply our recently developed code for spherically symmetric, fully general relativistic (GR) Lagrangian hydrodynamics and multigroup flux-limited diffusion neutrino transport to examine the effects of GR on the hydrodynamics and transport during collapse, bounce, and the critical shock reheating phase of core collapse supernovae. Comparisons of models computed with GR versus Newtonian hydrodynamics show that collapse to bounce takes slightly less time in the GR limit, and that the shock propagates slightly farther out in radius before receding. After a secondary quasistatic rise in the shock radius, the shock radius declines considerably more rapidly in the GR simulations than in the corresponding Newtonian simulations. During the shock reheating phase, core collapse computed with GR hydrodynamics results in a substantially more compact structure from the center out to the stagnated shock. The inflow speed of material behind the shock is also increased. Comparisons also show that the luminosity and rms energy of any neutrino flavor during the shock reheating phase increases when switching from Newtonian to GR hydrodynamics, and decreases when switching from Newtonian to GR transport. This latter decrease in neutrino luminosities and rms energies is less in magnitude than the increase that arise when switching from Newtonian to GR hydrodynamics, with the result that a fully GR simulation gives higher neutrino luminosities and harder neutrino spectra than a fully Newtonian simulation of the same precollapse model.Comment: 35 pages, 23 figure

    Decay rate and renormalized frequency shift of a quantum wire Wannier exciton in a planar microcavity

    Full text link
    The superradiant decay rate and frequency shift of a Wannier exciton in a one-dimensional quantum wire are studied. It is shown that the dark mode exciton can be examined experimentally when the quantum wire is embedded in a planar microcavity. It is also found that the decay rate is greatly enhanced as the cavity length LcL_{c} is equal to the multiple wavelength of the emitted photon. Similar to its decay rate counterpart, the frequency shift also shows discontinuities at resonant modes.Comment: 12 pages, 2 figures. To appear in P. R. B. September 200

    An attenuating mutation in a neurovirulent Sindbis virus strain interacts with the IPS-1 signaling pathway in vivo

    Get PDF
    The AR86 strain of Sindbis virus causes lethal neurologic disease in adult mice. Previous studies have identified a virulence determinant at nonstructural protein (nsP) 1 position 538 that regulates neurovirulence, modulates clearance from the CNS, and interferes with the type I interferon pathway. The studies herein demonstrate that in the absence of type I interferon signaling, the attenuated mutant exhibited equivalent virulence to S300 virus. Furthermore, both S300 and nsP1 T538I viruses displayed similar neurovirulence and replication kinetics in IPS-1-/- mice. TRIF dependent signaling played a modest role in protecting against disease by both S300 and nsP1 T538I, but did not contribute to control of nsP1 T538I replication within the CNS, while MyD88 played no role in the disease process. These results indicate that the control of the nsP1 T538I mutant virus is largely mediated by IPS-1-dependent RLR signaling, with TRIF-dependent TLR signaling also contributing to protection from virus-induced neurologic disease

    Bound states of L-shaped or T-shaped quantum wires in inhomogeneous magnetic fields

    Full text link
    The bound state energies of L-shaped or T-shaped quantum wires in inhomogeous magnetic fields are found to depend strongly on the asymmetric parameter α=W2/W1\alpha =W_{2}/W_{1}, i.e. the ratio of the arm widths. Two effects of magnetic field on bound state energies of the electron are obtained. One is the depletion effect which purges the electron out of the OQD system. The other is to create an effective potential due to quantized Landau levels of the magnetic field. The bound state energies of the electron in L-shaped or T-shaped quantum wires are found to depend quadratically (linearly) on the magnetic field in the weak (strong) field region and are independent of the direction of the magnetic field. A simple model is proposed to explain the behavior of the magnetic dependence of the bound state energy both in weak and strong magnetic field regions.Comment: 4 pages, 4 figure

    Safety Intelligence and Legal Machine Language: Do We Need the Three Laws of Robotics?

    Get PDF
    In this chapter we will describe a legal framework for Next Generation Robots (NGRs) that has safety as its central focus. The framework is offered in response to the current lack of clarity regarding robot safety guidelines, despite the development and impending release of tens of thousands of robots into workplaces and homes around the world. We also describ
    • …
    corecore