10,453 research outputs found

    PSR B1828-11: a precession pulsar torqued by a quark planet?

    Get PDF
    The pulsar PSR B1828-11 has long-term, highly periodic and correlated variations in both pulse shape and the rate of slow-down. This phenomenon may provide evidence for precession of the pulsar as suggested previously within the framework of free precession as well as forced one. On a presumption of forced precession, we propose a quark planet model to this precession henomenon instead, in which the pulsar is torqued by a quark planet. We construct this model by constraining mass of the pulsar (MpsrM_{\rm psr}), mass of the planet (MplM_{\rm pl}) and orbital radius of the planet (rplr_{\rm pl}). Five aspects are considered: derived relation between MpsrM_{\rm psr} and rplr_{\rm pl}, movement of the pulsar around the center of mass, ratio of MpsrM_{\rm psr} and MplM_{\rm pl}, gravitational wave radiation timescale of the planetary system, and death-line criterion. We also calculate the range of precession period derivative and gravitational wave strength (at earth) permitted by the model. Under reasonable parameters, the observed phenomenon can be understood by a pulsar (104101M10^{-4}\sim10^{-1}M_{\odot}) with a quark planet (108103M10^{-8}\sim10^{-3}M_{\odot}) orbiting it. According to the calculations presented, the pulsar would be a quark star because of its low mass, which might eject a lump of quark matter (to become a planet around) during its birth.Comment: 6 pages, 3 figures, accepted by MNRAS (Letters

    Refinement and growth enhancement of Al2Cu phase during magnetic field assisting directional solidification of hypereutectic Al-Cu alloy.

    Get PDF
    International audienceUnderstanding how the magnetic fields affect the formation of reinforced phase during solidification is crucial to tailor the structure and therefor the performance of metal matrix in situ composites. In this study, a hypereutectic Al-40 wt.% Cu alloy has been directionally solidified under various axial magnetic fields and the morphology of Al2Cu phase was quantified in 3D by means of high resolution synchrotron X-ray tomography. With rising magnetic fields, both increase of Al2Cu phase's total volume and decrease of each column's transverse section area were found. These results respectively indicate the growth enhancement and refinement of the primary Al2Cu phase in the magnetic field assisting directional solidification. The thermoelectric magnetic forces (TEMF) causing torque and dislocation multiplication in the faceted primary phases were thought dedicate to respectively the refinement and growth enhancement. To verify this, a real structure based 3D simulation of TEMF in Al2Cu column was carried out, and the dislocations in the Al2Cu phase obtained without and with a 10T high magnetic field were analysed by the transmission electron microscope

    Cooperative Power Scheduling for a Network of MIMO Links

    Get PDF
    A cooperative power scheduling algorithm developed by Wang, Krunz and Cui is extended for an ad hocnetwork of MIMO links. This algorithm, referred to as pricebased iterative water filling (PIWF) algorithm, is a distributed algorithm by which each link computes its power scheduling through an iterative and cooperative process. The cooperation among all links is achieved by adaptive price factors appliedby each link. Compared to a centralized power scheduling algorithm, the PIWF algorithm is much more efficient in computation although not as efficient in network throughput. Compared to a non-cooperative counter-part by Demirkol and Ingram where all price factors are zero, the PIWF algorithm requires additional in-network computation but is more efficient in network throughput
    corecore