10,572 research outputs found

    Generalized tt-jj Model

    Full text link
    By parameterizing the t-j model we present a new electron correlation model with one free parameter for high-temperature superconductivity. This model is of SUq(1,2)SU_{q}(1,2) symmetry. The energy spectrums are shown to be modulated by the free parameter in the model. The solution and symmetric structures of the Hilbert space, as well as the Bethe ansatz approach are discussed for special cases.Comment: 13 page, Latex, to appear in J. Phys.

    Modelling and control of the flame temperature distribution using probability density function shaping

    Get PDF
    This paper presents three control algorithms for the output probability density function (PDF) control of the 2D and 3D flame distribution systems. For the 2D flame distribution systems, control methods for both static and dynamic flame systems are presented, where at first the temperature distribution of the gas jet flames along the cross-section is approximated. Then the flame energy distribution (FED) is obtained as the output to be controlled by using a B-spline expansion technique. The general static output PDF control algorithm is used in the 2D static flame system, where the dynamic system consists of a static temperature model of gas jet flames and a second-order actuator. This leads to a second-order closed-loop system, where a singular state space model is used to describe the dynamics with the weights of the B-spline functions as the state variables. Finally, a predictive control algorithm is designed for such an output PDF system. For the 3D flame distribution systems, all the temperature values of the flames are firstly mapped into one temperature plane, and the shape of the temperature distribution on this plane can then be controlled by the 3D flame control method proposed in this paper. Three cases are studied for the proposed control methods and desired simulation results have been obtained

    The Abelian Manna model on two fractal lattices

    Full text link
    We analyze the avalanche size distribution of the Abelian Manna model on two different fractal lattices with the same dimension d_g=ln(3)/ln(2), with the aim to probe for scaling behavior and to study the systematic dependence of the critical exponents on the dimension and structure of the lattices. We show that the scaling law D(2-tau)=d_w generalizes the corresponding scaling law on regular lattices, in particular hypercubes, where d_w=2. Furthermore, we observe that the lattice dimension d_g, the fractal dimension of the random walk on the lattice d_w, and the critical exponent D, form a plane in 3D parameter space, i.e. they obey the linear relationship D=0.632(3) d_g + 0.98(1) d_w - 0.49(3).Comment: 4 pages, 3 figures, 3 tables, submitted to PRE as a Brief Repor

    Spin Polarisability of the Nucleon in the Heavy Baryon Effective Field Theory

    Full text link
    We have constructed a heavy baryon effective field theory with photon as an external field in accordance with the symmetry requirements similar to the heavy quark effective field theory. By treating the heavy baryon and anti-baryon equally on the same footing in the effective field theory, we have calculated the spin polarisabilities γi,i=1...4\gamma_i, i=1...4 of the nucleon at third order and at fourth-order of the spin-dependent Compton scattering. At leading order (LO), our results agree with the corresponding results of the heavy baryon chiral perturbation theory, at the next-to-leading order(NLO) the results show a large correction to the ones in the heavy baryon chiral perturbation theory due to baryon-antibaryon coupling terms. The low energy theorem is satisfied both at LO and at NLO. The contributions arising from the heavy baryon-antibaryon vertex were found to be significant and the results of the polarisabilities obtained from our theory is much closer to the experimental data.Comment: 21pages, title changed, minimal correction

    Multiscale Technicolor and the Zbb-bar Vertex

    Full text link
    We estimate the correction to the Zbb-bar vertex arising from the exchanges of the sideways extended technicolor (ETC) boson and the flavor-diagonal ETC boson in the multiscale walking technicolor model. The obtained result is too large to explain the present data. However, if we introduce a new self- interaction for the top quark to induce the top quark condensate serving as the origin of the large top quark mass, the corrected R_b=Gamma_b/Gamma_h can be consistent with the recent LEP data. The corresponding correction to R_c=Gamma_c/Gamma_h is shown to be negligibly small.Comment: 9-page LaTex fil

    Characterizing mixed mode oscillations shaped by noise and bifurcation structure

    Full text link
    Many neuronal systems and models display a certain class of mixed mode oscillations (MMOs) consisting of periods of small amplitude oscillations interspersed with spikes. Various models with different underlying mechanisms have been proposed to generate this type of behavior. Stochastic versions of these models can produce similarly looking time series, often with noise-driven mechanisms different from those of the deterministic models. We present a suite of measures which, when applied to the time series, serves to distinguish models and classify routes to producing MMOs, such as noise-induced oscillations or delay bifurcation. By focusing on the subthreshold oscillations, we analyze the interspike interval density, trends in the amplitude and a coherence measure. We develop these measures on a biophysical model for stellate cells and a phenomenological FitzHugh-Nagumo-type model and apply them on related models. The analysis highlights the influence of model parameters and reset and return mechanisms in the context of a novel approach using noise level to distinguish model types and MMO mechanisms. Ultimately, we indicate how the suite of measures can be applied to experimental time series to reveal the underlying dynamical structure, while exploiting either the intrinsic noise of the system or tunable extrinsic noise.Comment: 22 page

    Large Component QCD and Theoretical Framework of Heavy Quark Effective Field Theory

    Full text link
    Based on a large component QCD derived directly from full QCD by integrating over the small components of quark fields with p<E+mQ|{\bf p}| < E + m_Q, an alternative quantization procedure is adopted to establish a basic theoretical framework of heavy quark effective field theory (HQEFT) in the sense of effective quantum field theory. The procedure concerns quantum generators of Poincare group, Hilbert and Fock space, anticommutations and velocity super-selection rule, propagator and Feynman rules, finite mass corrections, trivialization of gluon couplings and renormalization of Wilson loop. The Lorentz invariance and discrete symmetries in HQEFT are explicitly illustrated. Some new symmetries in the infinite mass limit are discussed. Weak transition matrix elements and masses of hadrons in HQEFT are well defined to display a manifest spin-flavor symmetry and 1/mQ1/m_Q corrections. A simple trace formulation approach is explicitly demonstrated by using LSZ reduction formula in HQEFT, and shown to be very useful for parameterizing the transition form factors via 1/mQ1/m_Q expansion. As the heavy quark and antiquark fields in HQEFT are treated on the same footing in a fully symmetric way, the quark-antiquark coupling terms naturally appear and play important roles for simplifying the structure of transition matrix elements, and for understanding the concept of `dressed heavy quark' - hadron duality. In the case that the `longitudinal' and `transverse' residual momenta of heavy quark are at the same order of power counting, HQEFT provides a consistent approach for systematically analyzing heavy quark expansion in terms of 1/mQ1/m_Q. Some interesting features in applications of HQEFT to heavy hadron systems are briefly outlined.Comment: 59 pages, RevTex, no figures, published versio

    Symmetry-preserving Loop Regularization and Renormalization of QFTs

    Full text link
    A new symmetry-preserving loop regularization method proposed in \cite{ylw} is further investigated. It is found that its prescription can be understood by introducing a regulating distribution function to the proper-time formalism of irreducible loop integrals. The method simulates in many interesting features to the momentum cutoff, Pauli-Villars and dimensional regularization. The loop regularization method is also simple and general for the practical calculations to higher loop graphs and can be applied to both underlying and effective quantum field theories including gauge, chiral, supersymmetric and gravitational ones as the new method does not modify either the lagrangian formalism or the space-time dimension of original theory. The appearance of characteristic energy scale McM_c and sliding energy scale μs\mu_s offers a systematic way for studying the renormalization-group evolution of gauge theories in the spirit of Wilson-Kadanoff and for exploring important effects of higher dimensional interaction terms in the infrared regime.Comment: 13 pages, Revtex, extended modified version, more references adde

    The scalars from the topcolor scenario and the spin correlations of the top pair production at the LHC

    Full text link
    The topcolor scenario predicts the existences of some new scalars. In this paper, we consider the contributions of these new particles to the observables, which are related to the top quark pair (ttˉt\bar{t}) production at the LHC. It is found that these new particles can generate significant corrections to the ttˉt\bar{t} production cross section and the ttˉt\bar{t} spin correlations.Comment: 23 pages, 4 figures; discussions and references added; agrees with published versio

    Statistical characteristics of the total ion density in the topside ionosphere during the period 1996-2004 using empirical orthogonal function (EOF) analysis

    Get PDF
    International audienceWe have applied the empirical orthogonal function (EOF) analysis to examine the climatology of the total ion density Ni at 840 km during the period 1996-2004, obtained from the Defense Meteorological Satellite Program (DMSP) spacecraft. The data set for each of the local time (09:30 LT and 21:30 LT) is decomposed into a time mean plus the sum of EOF bases Ei of space, multiplied by time-varying EOF coefficients Ai. Physical explanations are made on the first three EOFs, which together can capture more than 95% of the total variance of the original data set. Results show that the dominant mode that controls the Ni variability is the solar EUV flux, which is consistent with the results of Rich et al. (2003). The second EOF, associated with the solar declination, presents an annual (summer to winter) asymmetry that is caused by the transequatorial winds. The semiannual variation that appears in the third EOF for the evening sector is interpreted as both the effects of the equatorial electric fields and the wind patterns. Both the annual and semiannual variations are modulated by the solar flux, which has a close relationship with the O+ composition. The quick convergence of the EOF expansion makes it very convenient to construct an empirical model for the original data set. The modeled results show that the accuracy of the prediction depends mainly on the first principal component which has a close relationship with the solar EUV flux
    corecore