44 research outputs found

    The Technology and Application of Improving Bearing Capacity of Deep Peat Soil Subgrade

    Get PDF
    Peat soil is widely distributed in more than 500 countries around the world, covering an area of over 4 million square kilometers, among which the distribution area in China is about 40000 square kilometers, and most of Peat soil is distributed in swamps and forests. Peat soil is with high content of organic matter, poor engineering properties and low bearing capacity, which is very unfavorable to the safety and functionality of infrastructure construction. The Belt and Road, and the other two parts of the peat soil are studied in this paper. The key technologies of peat soil foundation are studied through literature review and comparative study. This will provide theoretical and technical support for repairing bridges, roads and houses in the distribution area of peat soil, and provide the theoretical basis and technical foundation for the construction of the “peat” Road area. Chinese Library Classification: TU0

    pH-Dependent Fluorescent Probe That Can Be Tuned for Cysteine or Homocysteine

    Get PDF
    The very close structural similarities between cysteine and homocysteine present a great challenge to achieve their selective detection using regular fluorescent probes, limiting the biological and pathological studies of these two amino thiols. A coumarin-based fluorescent probe was designed featuring pH-promoted distinct turn-on followed by ratiometric fluorescence responses for Cys and turn-on fluorescence response for Hcy through two different reaction paths. These specific responses demonstrate the activity differences between Cys and Hcy qualitatively for the first time. The probe could also be used for Cys and Hcy imaging in living cells

    Enlarging the Stokes Shift by Weakening the π-Conjugation of Cyanines for High Signal-To-Noise Ratiometric Imaging

    Get PDF
    The signal-to-noise ratio (SNR) is one of the key features of a fluorescent probe and one that often defines its potential utility for in vivo labeling and analyte detection applications. Here, it is reported that introducing a pyridine group into traditional cyanine-7 dyes in an asymmetric manner provides a series of tunable NIR fluorescent dyes (Cy-Mu-7) characterized by enhanced Stokes shifts (≈230 nm) compared to the parent cyanine 7 dye (nm). The observed Stokes shift increase is ascribed to symmetry breaking of the Cy-Mu-7 core and a reduction in the extent of conjugation. The fluorescence signals of the Cy-Mu-7 dyes are enhanced upon confinement within the hydrophobic cavity of albumin or via spontaneous encapsulation within micelles in aqueous media. Utilizing the Cy-Mu-7, ultra-fast in vivo kidney labeling in mice is realized, and it is found that the liver injury will aggravate the burden of kidney by monitoring the fluorescence intensity ratio of kidney to liver. In addition, Cy-Mu-7 could be used as efficient chemiluminescence resonance energy transfer acceptor for the reaction between H O and bisoxalate. The potential utility of Cy-Mu-7 is illustrated via direct monitoring fluctuations in endogenous H O levels in a mouse model to mimic emergency room trauma

    Application of stimuli-responsive nanomedicines for the treatment of ischemic stroke

    Get PDF
    Ischemic stroke (IS) refers to local brain tissue necrosis which is caused by impaired blood supply to the carotid artery or vertebrobasilar artery system. As the second leading cause of death in the world, IS has a high incidence and brings a heavy economic burden to all countries and regions because of its high disability rate. In order to effectively treat IS, a large number of drugs have been designed and developed. However, most drugs with good therapeutic effects confirmed in preclinical experiments have not been successfully applied to clinical treatment due to the low accumulation efficiency of drugs in IS areas after systematic administration. As an emerging strategy for the treatment of IS, stimuli-responsive nanomedicines have made great progress by precisely delivering drugs to the local site of IS. By response to the specific signals, stimuli-responsive nanomedicines change their particle size, shape, surface charge or structural integrity, which enables the enhanced drug delivery and controlled drug release within the IS tissue. This breakthrough approach not only enhances therapeutic efficiency but also mitigates the side effects commonly associated with thrombolytic and neuroprotective drugs. This review aims to comprehensively summarize the recent progress of stimuli-responsive nanomedicines for the treatment of IS. Furthermore, prospect is provided to look forward for the better development of this field

    Cluster-randomized controlled trial of the effects of free glasses on purchase of children's glasses in China:The PRICE (Potentiating Rural Investment in Children's Eyecare) study

    Get PDF
    Offering free glasses can be important to increase children's wear. We sought to assess whether "Upgrade glasses" could avoid reduced glasses sales when offering free glasses to children in China.In this cluster-randomized, controlled trial, children with uncorrected visual acuity (VA)6/12 in both eyes at 138 randomly-selected primary schools in 9 counties in Guangdong and Yunnan provinces, China, were randomized by school to one of four groups: glasses prescription only (Control); Free Glasses; Free Glasses + offer of 15UpgradeGlasses;FreeGlasses+offerof15 Upgrade Glasses; Free Glasses + offer of 30 Upgrade Glasses. Spectacle purchase (main outcome) was assessed 6 months after randomization.Among 10,234 children screened, 882 (8.62%, mean age 10.6 years, 45.5% boys) were eligible and randomized: 257 (29.1%) at 37 schools to Control; 253 (28.7%) at 32 schools to Free Glasses; 187 (21.2%) at 31 schools to Free Glasses + 15Upgrade;and185(21.015 Upgrade; and 185 (21.0%) at 27 schools to Free Glasses +30 Upgrade. Baseline ownership among these children needing glasses was 11.8% (104/882), and 867 (98.3%) children completed follow-up. Glasses purchase was significantly less likely when free glasses were given: Control: 59/250 = 23.6%; Free glasses: 32/252 = 12.7%, P = 0.010. Offering Upgrade Glasses eliminated this difference: Free + 15Upgrade:39/183=21.315 Upgrade: 39/183 = 21.3%, multiple regression relative risk (RR) 0.90 (0.56-1.43), P = 0.65; Free + 30 Upgrade: 38/182 = 20.9%, RR 0.91 (0.59, 1.42), P = 0.69.Upgrade glasses can prevent reductions in glasses purchase when free spectacles are provided, providing important program income.ClinicalTrials.gov Identifier: NCT02231606. Registered on 31 August 2014

    MRI findings of low-grade fibromyxoid sarcoma: a case report and literature review

    No full text
    Abstract Background Low-grade fibromyxoid sarcoma (LGFMS) is a distinctive slow growing soft tissue neoplasm, mostly affecting young individuals with no gender difference. It usually arises in deep soft tissue of the lower limbs and trunk, but few cases of LGFMS located in pelvis have been reported. Case presentation We describe the magnetic resonance imaging(MRI) features of LGFMS located in the anterior pelvic wall of a 21-year-old female and correlate them with clinicopathological features. The tumor was completely resected and there is no recidivism during the follow-up one year. Conclusions We report on the radiological findings of LGFMS with histological correlation. Awareness of the imaging features may be useful for the diagnosis of LGFMS and helpful to distinguish among mimics

    Recent Progress in Chromogenic and Fluorogenic Chemosensors for Hypochlorous Acid

    No full text
    Due to the biological and industrial importance of hypochlorous acid, the development of optical probes for HOCl has been an active research area. Hypochlorous acid and hypochlorite can oxidize electron-rich analytes with accompanying changes in molecular sensor spectroscopic profiles. Probes for such processes may monitor HOCl levels in the environment or in an organism and via bio-labeling or bioimaging techniques. This review summarizes recent developments in the area of chromogenic and fluorogenic chemosensors for HOCl

    The Technology and Application of Improving Bearing Capacity of Deep Peat Soil Subgrade

    No full text
    Peat soil is widely distributed in more than 500 countries around the world, covering an area of over 4 million square kilometers, among which the distribution area in China is about 40000 square kilometers, and most of Peat soil is distributed in swamps and forests. Peat soil is with high content of organic matter, poor engineering properties and low bearing capacity, which is very unfavorable to the safety and functionality of infrastructure construction. The Belt and Road, and the other two parts of the peat soil are studied in this paper. The key technologies of peat soil foundation are studied through literature review and comparative study. This will provide theoretical and technical support for repairing bridges, roads and houses in the distribution area of peat soil, and provide the theoretical basis and technical foundation for the construction of the “peat” Road area. Chinese Library Classification: TU0

    Functional Synthetic Probes for Selective Targeting and Multi-analyte Detection and Imaging

    No full text
    In contrast to the classical design of a probe with one binding site to target one specific analyte, probes with multiple interaction sites or, alternatively, with single sites promoting tandem reactions to target one or multiple analytes, have been developed. They have been used in addressing the inherent challenges of selective targeting in the presence of structurally similar compounds and in complex matrices, as well as the visualization of the in vivo interaction or crosstalk between the analytes. Examples of analytes include reactive sulfur species, reactive oxygen species, nucleotides and enzymes. This review focuses on recent innovations in probe design, detection mechanisms and the investigation of biological processes. The vision is to promote the ongoing development of fluorescent probes to enable deeper insight into the physiology of bioactive analytes
    corecore