1,758 research outputs found

    QC-ODKLA: Quantized and Communication-Censored Online Decentralized Kernel Learning via Linearized ADMM

    Full text link
    This paper focuses on online kernel learning over a decentralized network. Each agent in the network receives continuous streaming data locally and works collaboratively to learn a nonlinear prediction function that is globally optimal in the reproducing kernel Hilbert space with respect to the total instantaneous costs of all agents. In order to circumvent the curse of dimensionality issue in traditional online kernel learning, we utilize random feature (RF) mapping to convert the non-parametric kernel learning problem into a fixed-length parametric one in the RF space. We then propose a novel learning framework named Online Decentralized Kernel learning via Linearized ADMM (ODKLA) to efficiently solve the online decentralized kernel learning problem. To further improve the communication efficiency, we add the quantization and censoring strategies in the communication stage and develop the Quantized and Communication-censored ODKLA (QC-ODKLA) algorithm. We theoretically prove that both ODKLA and QC-ODKLA can achieve the optimal sublinear regret O(T)\mathcal{O}(\sqrt{T}) over TT time slots. Through numerical experiments, we evaluate the learning effectiveness, communication, and computation efficiencies of the proposed methods

    Expression of monocyte chemotactic protein-3 mRNA in rat vascular smooth muscle cells and in carotid artery after balloon angioplasty

    Get PDF
    AbstractMonocyte chemotactic protein-3 (MCP-3) is a CC chemokine that functions in chemoattraction and activation of monocytes, T lymphocytes, eosinophils, basophils, natural killer cells and dendritic cells. The activation of the target cells by MCP-3 is via specific chemokine receptors CCR2 and CCR3, of which CCR2 is shared with MCP-1. MCP-1 and CCR2 have been implicated in vascular diseases including atherosclerosis and restenosis, that are known to be involved in inflammation (accumulation of T lymphocytes and monocytes) and smooth muscle cell (SMC) activation (proliferation, migration and matrix deposition). To investigate a potential role of MCP-3 in vascular injury, the present work examined its mRNA expression in rat aortic SMCs stimulated with various inflammatory stimuli including LPS, TNF-α, IL-1β, IFN-γ and TGF-β. A time- and concentration-dependant induction of MCP-3 mRNA in SMCs was observed by means of Northern analysis. A strikingly similar expression profile was observed for MCP-3 and MCP-1 mRNA in SMCs. Furthermore, MCP-3 mRNA expression was induced in rat carotid artery after balloon angioplasty. A significant induction in MCP-3 mRNA was observed in the carotid artery at 6 h (41-fold increase over control, P<0.001), 1 day (13-fold increase, P<0.001) and 3 days (6-fold increase, P<0.01) after balloon angioplasty as quantitated by reverse transcription and polymerase chain reaction. These data provide evidence for the cytokine-induced expression of MCP-3 in SMCs and in carotid artery after balloon angioplasty, suggesting a potential role of MCP-3 in the pathogenesis of restenosis and atherosclerosis

    Enhancing multiple harmonics in tapping mode atomic force microscopy by added mass with finite size

    Get PDF
    A method to enhance the harmonics of tapping mode atomic force microscopy is proposed in this study through an attached mass with finite size. It is demonstrated that ratios between higher-order natural frequencies and the fundamental one can be tuned to be specified integers with this method. The first three eigenmodes could be excited simultaneously, defining a highly-sensitive multi-harmonic cantilever, which can be utilized to resolve the sample properties effectively. The established theoretical model is validated by finite element analysis. This method can also be developed for the determination of mass, position and geometry of micro-particle in mass sensing application

    Factoring Electrochemical and Full-Lifecycle Aging Modes of Battery Participating in Energy and Transportation Systems

    Get PDF
    Transportation electrification emerges as a pivotal strategy to realize deep decarbonization for many countries, and the central part of this is battery. However, a key challenge often overlooked is the impact of battery aging on the economy and longevity of electric vehicles (EVs). To address this issue, the paper proposes a novel battery full-life degradation (FLD) model and energy management framework that substantially improves the overall economic efficiency of Battery Energy Storage Systems (BESS). In the first stage, battery electrochemical aging features are modeled by learning cell fading rate under various healthy states, capitalized on the Stanford experimental open dataset. Accordingly, a lifecycle degradation model is then developed considering various operational conditions and aging stages to quantitatively assess the effects of depth of discharge, C-rate, state of health, and state of charge. In the second stage, battery electrochemical aging features are integrated into vehicle energy management so that batteries under different fading rates can be flexibly utilized during whole lifecycles. The proposed methods are validated on a practical UK distribution network and a hybrid vehicles hardware-in-the-loop platform. With the proposed methods, EV users can make informed decisions to optimize energy usage and prolong the lifespan of vehicle BESS, thereby fostering a more sustainable and efficient transportation infrastructure.</p

    Revisiting the Association of Blood Pressure with Mortality in Oldest Old People in China: Community Based, Longitudinal Prospective Study

    Get PDF
    Objective To examine the associations of blood pressure with all cause mortality and cause specific mortality at three years among oldest old people in China. Design Community based, longitudinal prospective study. Setting 2011 and 2014 waves of the Chinese Longitudinal Healthy Longevity Survey, conducted in 22 Chinese provinces. Participants 4658 oldest old individuals (mean age 92.1 years). Main outcome measures All cause mortality and cause specific mortality assessed at three year follow-up. Results 1997 deaths were recorded at three year follow-up. U shaped associations of mortality with systolic blood pressure, mean arterial pressure, and pulse pressure were identified; values of 143.5 mm Hg, 101 mm Hg, and 66 mm Hg conferred the minimum mortality risk, respectively. After adjustment for covariates, the U shaped association remained only for systolic blood pressure (minimum mortality risk at 129 mm Hg). Compared with a systolic blood pressure value of 129 mm Hg, risk of all cause mortality decreased for values lower than 107 mm Hg (from 1.47 (95% confidence interval 1.01 to 2.17) to 1.08 (1.01 to 1.17)), and increased for values greater than 154 mm Hg (from 1.08 (1.01 to 1.17) to 1.27 (1.02 to 1.58)). In the cause specific analysis, compared with a middle range of systolic blood pressure (107-154 mm Hg), higher values (\u3e154 mm Hg) were associated with a higher risk of cardiovascular mortality (adjusted hazard ratio 1.51 (95% confidence interval 1.12 to 2.02)); lower values (Hg) were associated with a higher risk of non-cardiovascular mortality (1.58 (1.26 to 1.98)). The U shaped associations remained in sensitivity and subgroup analyses. Conclusions This study indicates a U shaped association between systolic blood pressure and all cause mortality at three years among oldest old people in China. This association could be explained by the finding that higher systolic blood pressure predicted a higher risk of death from cardiovascular disease, and that lower systolic blood pressure predicted a higher risk of death from non-cardiovascular causes. These results emphasise the importance of revisiting blood pressure management or establishing specific guidelines for management among oldest old individuals
    corecore