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A method to enhance the harmonics of tapping mode atomic force microscopy is proposed 

in this study through an attached mass with finite size. It is demonstrated that ratios between 

higher-order natural frequencies and the fundamental one can be tuned to be specified 

integers with this method. The first three eigenmodes could be excited simultaneously, 

defining a highly-sensitive multi-harmonic cantilever, which can be utilized to resolve the 

sample properties effectively. The established theoretical model is validated by finite 

element analysis. This method can also be developed for the determination of mass, position 

and geometry of micro-particle in mass sensing application. 
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Tapping mode atomic force microscopy (AFM) is one of the most extensively used scanning 

probe method for material characterization and measurement in nanoscale.1-4) The 

intermittent contact between the tip and the sample surface substantially reduces the lateral 

force, and explains its ability to image soft materials, such as DNA, cells or polymers.5-6) 

The decay length of the interaction force is, however, less than the cantilever oscillation 

amplitude, leading to highly nonlinear characteristics in the dynamics.7-8) The nonlinearity 

could introduce higher harmonic components in the cantilever’s motion, which are integer 

multiple of the excitation frequency. The harmonics contain important information on the 

sample properties. They thus allow time-resolved forces to be obtained, and make it possible 

for the extraction of the sample properties in microsecond.9-12) It has been proved that the 

higher harmonics can be utilized effectively for both material characterization and surface 

imaging.13-15) Information that is usually not resolved in the conventional method can be 

obtained with the multi-frequency AFM. 16-18) 

Higher eigenmodes of the cantilever may be excited by the higher harmonic components 

as effective external forces, whenever they are close to the frequencies of the eigenmodes.19-

20) However, a higher harmonic component barely coincides with one of the natural 

frequencies of the cantilever. It is therefore several orders smaller than the fundamental one 

and may fall below the measurement noise brought by the electronics.1) To enhance the 

harmonics, efforts have been made to either improve the signal to noise ratio of the tapping 

mode AFM or to develop specific approaches for experimental purposes, such as harmonic 

cantilever, bimodal excitation or band excitation.21-23) A simple way for the enhancement of 

higher eigenmodes is the utilization of two driving forces vibrating at the frequencies tuned 

to match the first two flexural eigenfrequencies of the cantilever.22) Besides, the multi-

harmonic cantilever provides a straightforward method to enhance the higher harmonics with 

the simultaneous excitation of several eigenmodes, in which the modification of the shape 

and geometry of the cantilever could define multi-harmonic AFMs.24-28) With the width as a 

variable, Cai et al. designed and optimized a variable-width harmonic probe.26) Accordingly 

the natural frequencies of the cantilever could be relocated and coincide with the higher 

harmonics. Li et al. tuned the natural frequencies of the cantilever through the attachment of 

a concentrated mass, in which the second and third eigenfrequencies are integer multiples of 

the fundamental eigenfrequency.27) It is an effective method from a practical standpoint. 

Results, however, indicate that the mass of the particle is large compared with the cantilever. 

The geometry and the volume of the particle thus cannot be ignored.29-30) 

In this letter, a straightforward method to construct a harmonic cantilever in tapping mode 
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atomic force microscopy is proposed, in which an attached mass with finite size is considered 

to tune the resonance characteristics of the cantilever. With the consideration of the geometry 

and volume of the added mass, the rotational inertia and eccentricity along with its mass and 

position are incorporated as tuning parameters. The purpose is to relocate the natural 

frequencies of the cantilever to the harmonics which are integer multiples of its fundamental 

frequency. With the enhanced harmonics, the first three eigenmodes of the cantilever can be 

excited simultaneously, and thus the sensitivity of the tapping mode AFM to material 

properties could be improved, which enables qualitative extraction of sample property while 

being fast surface imaging. 

An added mass of arbitrary geometry is attached to the cantilever at the location 𝑥 = 𝑙, as 

depicted in Fig.1 (a). Except for the mass property (𝑚), the rotational inertia (𝐽) and vertical 

eccentricity (𝑒 ) are introduced as geometric characteristics of the added particle, which 

contribute to the resonance of the beam. The eccentricity is defined as the distance between 

the mass center of the particle and the neutral axis of the cantilever. The cantilever has a 

uniform cross section of thickness ℎ and width 𝑏, mass 𝑀, length 𝐿 and flexural rigidity 

𝐸𝐼. Considering small deflection, the Euler-Bernouli equation is used to describe the motion 

of the cantilever in the sub-domains respect to the left and right side of the attached mass 

as27-32) 

𝐸𝐼
𝜕4�̅�(𝜉,𝑡)

𝜕𝜉4 + 𝑀𝐿3 𝜕2�̅�(𝜉,𝑡)

𝜕𝑡2 = 0, 0 < ξ < 𝜉𝑙   and  𝜉𝑙 < ξ < 1       

(1) 

 

where �̅�(𝜉, 𝑡)  is the dimensionless flexural displacement of the cantilever obtained by 

normalizing the transverse displacement with respect to the length of the beam. 𝜉 = 𝑥/𝐿 is 

the dimensionless coordinate, and the parameter 𝜉𝑙 = 𝑙/𝐿  indicates the location of the 

particle attached. Assuming �̅�(𝜉, 𝑡) = 𝐴𝜑(𝜉)𝑒𝑖𝜔𝑡 and including the inertial property of the 

particle as part of the boundary conditions, it results in a boundary value problem 

{

𝜕4𝛷1(𝜉)

𝜕𝜉4 −
𝑀𝐿3𝜔2

𝐸𝐼
𝛷1(𝜉) = 0,    0 < ξ < 𝜉𝑙  

𝜕4𝛷2(𝜉)

𝜕𝜉4 −
𝑀𝐿3𝜔2

𝐸𝐼
𝛷2(𝜉) = 0,    𝜉𝑙 < ξ < 1

                     

(2) 

 

with the following boundary conditions 

𝛷1(0) = 0, 𝛷1
′ (0) = 0, 𝛷2

′′(1) = 0, 𝛷2
′′′(1) = 0 

𝛷1(𝜉𝑙) − 𝛷2(𝜉𝑙) = 0, 𝛷1
′ (𝜉𝑙) − 𝛷2

′ (𝜉𝑙) = 0, 
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𝛷2
′′(𝜉𝑙) − 𝛷1

′′(𝜉𝑙) = −𝛼𝜆4�̅�2𝛷1
′ (𝜉𝑙),                          (3) 

𝛷2
′′′(𝜉𝑙) − 𝛷1

′′′(𝜉𝑙) = 𝛼𝜆4𝛷1(𝜉𝑙),  

 

where 𝜆4 = 𝑀𝐿3𝜔2/𝐸𝐼 , 𝛼 = 𝑚/𝑀 , �̅�2 = (𝑒2 + 𝐽/𝑚)/𝐿2 , 𝜔  is the angular frequency 

and the prime denotes differential with respect to 𝜉. Note that the dimensionless parameter 

𝛼  indicates the particle mass normalized by the beam mass, and �̅�  is the effective 

eccentricity which is the eccentricity and radius of gyration normalized by the beam length, 

representing the influences of the mass and geometric properties of the added mass with 

arbitrary geometry on the resonance characteristics of the cantilever. The frequency equation 

then can be obtained as det[𝐃(𝛼, 𝜉𝑙, 𝑒,̅ 𝜆)] = 0. 

The determinant is expressed as 

|

|

|

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
𝑐𝑙 𝑠𝑙 𝑐ℎ𝑙 𝑠ℎ𝑙 −𝑐𝑙 −𝑠𝑙 −𝑐ℎ𝑙 −𝑠ℎ𝑙

−𝑠𝑙 𝑐𝑙 𝑠ℎ𝑙 𝑐ℎ𝑙 𝑠𝑙 −𝑐𝑙 −𝑠ℎ𝑙 −𝑐ℎ𝑙

𝑐𝑙 − 𝛼�̅�2𝜆3𝑠𝑙 𝑠𝑙 + 𝛼�̅�2𝜆3𝑐𝑙 −𝑐ℎ𝑙 + 𝛼�̅�2𝜆3𝑠ℎ𝑙 −𝑠ℎ𝑙 + 𝛼�̅�2𝜆3𝑐ℎ𝑙 −𝑐𝑙 −𝑠𝑙 𝑐ℎ𝑙 𝑠ℎ𝑙

𝛼𝜆𝑐𝑙 + 𝑠𝑙 𝛼𝜆𝑠𝑙−𝑐𝑙 𝛼𝜆𝑐ℎ𝑙 + 𝑠ℎ𝑙 𝛼𝜆𝑠ℎ𝑙 + 𝑐ℎ𝑙 −𝑠𝑙 𝑐𝑙 −𝑠ℎ𝑙 −𝑐ℎ𝑙

0 0 0 0 −𝑐 −𝑠 𝑐ℎ 𝑠ℎ
0 0 0 0 𝑠 −𝑐 𝑠ℎ 𝑐ℎ

|

|

|

= 0         (4) 

 

where the following notations are introduced 

𝑠𝑙 = 𝑠𝑖𝑛𝜆𝜉
𝑙
, 𝑐𝑙 = cos𝜆𝜉

𝑙
, 𝑠ℎ𝑙 = 𝑠𝑖𝑛h𝜆𝜉

𝑙
, 𝑐ℎ𝑙 = cosh𝜆𝜉

𝑙
, 

      𝑠 = 𝑠𝑖𝑛𝜆 ,    𝑐 = cos𝜆 ,  𝑠ℎ = 𝑠𝑖𝑛h𝜆 ,  𝑐ℎ = cosh𝜆                     

(5) 

 

Provided the consecutive roots of the frequency equation are denoted as 𝜆𝑖(𝑖 = 1,2, … ) 

for given 𝛼 , 𝜉𝑙  and �̅� , the eigenfrequencies corresponding to the eigenmodes could be 

calculated as 𝜔𝑖 = 𝜆𝑖
2√𝐸𝐼/𝑀𝐿3  which yields the ratio between a higher-order natural 

frequency (𝜔𝑖) and the fundamental one (𝜔1) as 𝑛𝑖1 = 𝜔𝑖/𝜔1 = (𝜆𝑖/𝜆1)2. Note that the 

ratio is totally determined by three dimensionless parameters (α, 𝜉𝑙, �̅�), corresponding to the 

mass, location and effective eccentricity of the attached mass respectively. When the ratio 

𝑛𝑖1  is an integer, it indicates the eigenfrequency corresponding to a certain higher-order 

eigenmode coincides with the 𝑛𝑖1 -th harmonic signal, which is also 𝑛𝑖1 -multiple of the 

fundamental natural frequency. By tuning the mass, location and effective eccentricity of the 

attached mass (α, 𝜉𝑙 , �̅�) to certain optimal values, the frequency response of the cantilever 

corresponding to the first three eigenmodes could exhibit peak characteristics at integer 

multiples of the fundamental eigenfrequency. The first three eigenmodes can be excited 
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simultaneously, and the harmonics are enhanced, providing highly-sensitive information to 

access the interaction force between the tip and the sample, which may help to analyze the 

sample property quantitatively. 

In fact, the mass and effective eccentricity of the added particle with finite size are rarely 

independent quantities. The dependence of the mass on the effective eccentricity can 

simplify the selection of the optimal values of the dimensionless parameters (𝛼, 𝜉𝑙, �̅�) for 

regular geometry. For example, considering a solid spherical particle of radius 𝑟 , 

dependence of the normalized mass and effective eccentricity on normalized radius (𝛾 =

𝑟/𝐿) is given as α = (4𝜋/3)(𝜌𝑚𝑎𝑠𝑠/𝜌𝑏𝑒𝑎𝑚)(𝛾3𝐿2/𝑏ℎ) and �̅�2 = (𝛾 + ℎ/2𝐿)2 + 2𝛾2/5. 

The mass and effective eccentricity of a solid spherical particle could be represented by 

its radius once the geometry and material of the cantilever are determined. In this case, the 

resonance peak of the a higher-order eigenmode of a cantilever can be altered to locate at an 

integer multiple of the fundamental eigenfrequency through the tuning of the simplified two 

dimensionless parameters (𝜉𝑙, 𝛾) , namely the location of the added mass and its radius 

shown in Fig.1 (b). The ratio between the second/third natural frequency and the 

fundamental frequency is integer at specific values of (𝜉𝑙, 𝛾), which is annotated on the line 

in Fig.2. When the normalized radius of the solid spherical particle varies from 0 to 0.05, the 

second natural frequency matches the 5th-9th harmonics, and the third natural frequency 

matches the 13th-23th harmonics. It provides a collection of (𝜉𝑙, 𝛾) as design parameters to 

change the higher-order natural frequency to coincide with the harmonic of interest.  

When the intersections the specific values of (𝜉𝑙, 𝛾) in Fig 2 (a) and Fig 2 (b) are used, it 

defines a multiple harmonic cantilever, implying that the first three eigenmodes can be 

excited simultaneously by the harmonic signals. There are 20 combinations between the 

location and the radius of the particle in total. For example, when  (𝜉𝑙, 𝛾) =

(0.2732,0.0447) , the second and third eigenfrequencies coincide with the 5th and 13th 

harmonics respectively. Note that when the normalized radius of the particle (𝛾 = 𝑟/𝐿) is 

less than 0.02, the second natural frequency could not match any harmonic, which is the 

same while 𝛾 < 0.01  in the third natural frequency. Consider a common cantilever in 

tapping mode AFM with the length and thickness of 200μm and 5μm, respectively. The 

diameter of the added particle should be no less than 8μm to define a multiple harmonic 

cantilever, which is larger than the thickness of the cantilever. It demonstrates that the 

geometry of the added mass plays a significant role in the tuning of the vibration 

characteristics of a micro-cantilever used in tapping mode AFM. 

Typical values of the location and radius of the added particle for the design of a multiple 
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harmonic cantilever are listed in Table 1. Results predicted by the finite element method are 

also displayed. Finite element analysis results are in good agreement with the theoretical 

ones. The relative error is below 1%, indicating the feasibility of the proposed method. The 

enhancement of the harmonics in the dynamics of the cantilever helps to estimate the 

interaction forces which are directly associated with the sample properties. Besides, in the 

tuning process, given geometry properties of the particle as well as its mass and position 

determines the frequency spectra of the cantilever. The inverting process could, therefore, 

be developed to convert the frequency data to the information of the particle with back-

calculation algorithms analogous to recent methods related to the mass detection. 

In summary, a tuning method for the enhancement of higher-order harmonics in tapping 

mode AFM is proposed with the attachment of a finite size mass. Tuning parameters include 

the mass and position of the attached mass, as well as its rotational inertial and eccentricity 

to the beam axis with the consideration of its geometry and volume. A collection of tuning 

parameters can be determined to make the higher-order natural frequency coincide with the 

harmonic of interest. It could further define multi-harmonic cantilevers, in which the 

eigenfrequencies corresponding to the second and third flexural eigenmodes are altered to 

locate at integer multiples of the fundamental one. The first three eigenmodes of the 

cantilever could be excited simultaneously by the harmonics generated by the tip-sample 

interaction forces, enhancing the harmonic signals and providing the ability of surface 

property extraction without compromising topology acquisition speed in tapping mode AFM. 

Resonance characteristics are also calculated using the finite element method with the typical 

values of the location and radius of an added spherical particle obtained from the proposed 

model. Results show excellent agreement, which verifies the effectiveness of the established 

model. This method could further be extended to determine the position, mass and geometry 

of a particle of finite size attached to a beam in mass sensing of nano-mechanical applications 

with the development of back-calculation algorithms. 
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Figure Captions 

Fig. 1. (a) An added mass (𝑚 ) of arbitrary geometry is attached to a uniform 

cantilever at the location 𝑥 = 𝑙  to enhance the harmonics. The geometry 

properties of the added mass are reflected in its rotational inertial 𝐽  and 

eccentricity 𝑒 respect to the beam axis. (b) Frequency response of the enhanced 

cantilever (harmonic cantilever) is compared with that of the original cantilever. 

The 6-th and 17-th harmonics can be significantly enhanced by the second and 

third eigenmodes of the harmonic cantilever. ( 𝜉𝑙 = 0.3826, 𝛾 = 0.0205, 𝜌𝑚𝑎𝑠𝑠/

𝜌𝑏𝑒𝑎𝑚 = 8,  𝐿2/𝑏ℎ = 200) 

 

Fig. 2. Dependence of ratio between higher natural frequency and the fundamental 

natural frequency of the cantilever on location (𝜉𝑙 ) and radius (𝛾 ) of a solid 

spherical particle: (a) 𝑛21 = 𝜔2/𝜔1 , (b) 𝑛31 = 𝜔3/𝜔1 . The projection is the 

intersection between the ratio surface and the planes with integer ratios, where the 

integer ratios are annotated on the curves. ( 𝜌𝑚𝑎𝑠𝑠/𝜌𝑏𝑒𝑎𝑚 = 8, 𝐿2/𝑏ℎ = 200) 

 

 

 

 

 

 

 

 

 

 

 

 



10 

 

 

 

 

 



11 

 

Table I.  Typical values of particle location and radius to enhance harmonics 

obtained by theoretical model and validated by finite element method.  

 

𝜉𝑙 𝛾 Euler-Bernouli 

Model 

Finite Element Method 

𝑛21 𝑛31 𝑓1 (MHz) 𝑓2 (MHz) 𝑓3 (MHz) 𝑛21 𝑛31 

0.2733 0.0447 5 13 0.1024 0.5135 1.3331 5.01 13.01 

0.1888 0.0334 6 15 0.1038 0.6195 1.5581 5.97 15.01 

0.6982 0.0353 7 18 0.0825 0.5787 1.4818 7.01 17.96 

0.7357 0.0439 8 20 0.0748 0.5951 1.5084 7.96 20.17 
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(a)      (b) 

Fig.1. 
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(a)      (b) 

Fig. 2. 


