9 research outputs found

    Transcriptomic analysis reveals the molecular mechanisms underlying osteoclast differentiation in the estrogen-deficient pullets

    Get PDF
    Several previous reports have suggested that estrogen (E2) is a vital signal responsible for the reg-ulation of skeletal homeostasis and bone remodeling in mammals. E2 could efficiently accelerate the growth of medullary bone in pullets during sexual maturity. Fur-thermore, the low E2 level can strengthen the mechanical bone functions in female hens. However, mechanistic studies to describe the effects of E2 on bone in pullets during the initiation of the puberty period are remaining elusive. Therefore, the aim of this study was to explore the effect of inhibiting E2 biosynthesis on the biomechani-cal properties and its molecular mechanism during sexual maturity of pullets. In this study, a total of 90 Hy-line Sonia pullets with comparable body weight at 13 wk of age were selected and categorized into 2 separate groups. Daily, 0.5 mg/4 mL of letrozole (LZ) was orally adminis-tered to the treatment (TRT) group and 4 mL of saline to the control (CON) group of pullets for 6 wk. Com-pared with the CON group, a lower plasma E2 level was observed in the TRT group. Furthermore, plasma P, Gla protein (BGP), and 1,25-dihydroxy vitamin D3 (1,25-(OH)2D3) levels were markedly suppressed, whereas the plasma alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) levels were signifi-cantly elevated. Moreover, the cortical bone thickness and breaking strength of the tibia and femur, the bone mineral density of the humerus, and the bone mineral content of the humerus as well as the femur were increased significantly. The expression levels of 340 dif-ferentially expressed genes (DEGs) differed signifi-cantly between the CON and TRT group in the tibia at 19 wk of age. Among them, 32 genes were up-regulated, whereas 308 were down-regulated in the TRT group. The variations in candidate genes associated with oste-oclast differentiation and cell adhesion may indicate that LZ inhibits E2 biosynthesis, consequently, reduces osteoclast differentiation by suppressing inter-cellular communication and cells attaching to extracellular matrix components. Taken together, the present study demonstrated that inhibiting E2 synthesis during sex-ual maturity of pullets decreased osteoclast differentia-tion and considerably enhanced bone quality

    A Hybrid Imperialist Competitive Algorithm for the Distributed Unrelated Parallel Machines Scheduling Problem

    No full text
    In this paper, the distributed unrelated parallel machines scheduling problem (DUPMSP) is studied and a hybrid imperialist competitive algorithm (HICA) is proposed to minimize total tardiness. All empires were categorized into three types: the strongest empire, the weakest empire, and other empires; the diversified assimilation was implemented by using different search operator in the different types of empires, and a novel imperialist competition was implemented among all empires except the strongest one. The knowledge-based local search was embedded. Extensive experiments were conducted to compare the HICA with other algorithms from the literature. The computational results demonstrated that new strategies were effective and the HICA is a promising approach to solving the DUPMSP

    A Hybrid Imperialist Competitive Algorithm for the Distributed Unrelated Parallel Machines Scheduling Problem

    No full text
    In this paper, the distributed unrelated parallel machines scheduling problem (DUPMSP) is studied and a hybrid imperialist competitive algorithm (HICA) is proposed to minimize total tardiness. All empires were categorized into three types: the strongest empire, the weakest empire, and other empires; the diversified assimilation was implemented by using different search operator in the different types of empires, and a novel imperialist competition was implemented among all empires except the strongest one. The knowledge-based local search was embedded. Extensive experiments were conducted to compare the HICA with other algorithms from the literature. The computational results demonstrated that new strategies were effective and the HICA is a promising approach to solving the DUPMSP

    Melatonin alleviates ovarian function damage and oxidative stress induced by dexamethasone in the laying hens through FOXO1 signaling pathway

    Get PDF
    Oxidative stress can trigger follicular atresia, and decrease follicles quantity in each develop-ment stage, thereby alleviating reproductive activity. The induction of oxidative stress in chickens through intraperitoneal injection of dexamethasone is a reliable and stable method. Melatonin has been shown to miti-gate oxidative stress in this model, but the underlying mechanism remains unclear. Therefore, this study aimed to investigate whether melatonin can recover aberrant antioxidant status induced by dexamethasone and the specific mechanism behind melatonin-dependent protec-tion. A total of 150 healthy 40-wk-old Dawu Jinfeng lay-ing hens with similar body weights and laying rates were randomly divided into three groups, with five replicates per group and 10 hens per replicate. The hens in the con-trol group (NS) received intraperitoneal injections of normal saline for 30 d, the dexamethasone group (Dex +NS) received 20 mg/kg dose of dexamethasone for the first 15 d, followed by the 15 d of normal saline treat-ment. While in the melatonin group (Dex+Mel), dexa-methasone (20 mg/kg dose) was injected intraperitoneally in the first 15 d, and melatonin (20 mg/kg/d) was injected in the last 15 d. The results showed that dexamethasone treatment significantly enhanced oxidative stress (P < 0.05), while melatonin not only inhibited the oxidative stress but also notably enhanced the antioxidant enzymes superoxide dismutase (SOD), catalase activity (CAT), glutathione peroxi-dase (GSH-Px), and antioxidant genes CAT, superox-ide dismutase 1 (SOD1), glutathione peroxidase 3 (GPX3), and recombinant peroxiredoxin 3 (PRDX3) expression (P < 0.05). Melatonin treatment also markedly reduced 8-hydroxy deoxyguanosine (8-OHdG), malondialdehyde (MDA), and reactive oxy-gen species (ROS) levels (P < 0.05) and apoptotic genes Caspase-3, Bim, and Bax in the follicle. In the Dex+Mel group, the Bcl-2 and SOD1 protein levels were also increased (P < 0.05). Melatonin inhibited the forkhead Box Protein O1 (FOXO1) gene and its protein expres-sion (P < 0.05). In general, this investigation revealed that melatonin might decrease oxidative stress and ROS by enhancing antioxidant enzymes and genes, activating the antiapoptotic genes, and inhibiting the FOXO1 pathway in laying hens

    Restorative effects of Lactobacillus rhamnosus LR-32 on the gut microbiota, barrier integrity, and 5-HT metabolism in reducing feather-pecking behavior in laying hens with antibiotic-induced dysbiosis

    Get PDF
    The development of abnormal feather-pecking (FP) behavior, where laying hens display harmful pecks in conspecifics, is multifactorial and has been linked to the microbiota-gut-brain axis. Antibiotics affect the gut microbial composition, leading to gut-brain axis imbalance and behavior and physiology changes in many species. However, it is not clear whether intestinal dysbacteriosis can induce the development of damaging behavior, such as FP. The restorative effects of Lactobacillus rhamnosus LR-32 against intestinal dysbacteriosis-induced alternations need to be determined either. The current investigation aimed to induce intestinal dysbacteriosis in laying hens by supplementing their diet with the antibiotic lincomycin hydrochloride. The study revealed that antibiotic exposure resulted in decreased egg production performance and an increased tendency toward severe feather-pecking (SFP) behavior in laying hens. Moreover, intestinal and blood-brain barrier functions were impaired, and 5-HT metabolism was inhibited. However, treatment with Lactobacillus rhamnosus LR-32 following antibiotic exposure significantly alleviated the decline in egg production performance and reduced SFP behavior. Lactobacillus rhamnosus LR-32 supplementation restored the profile of the gut microbial community, and showed a strong positive effect by increasing the expression of tight junction proteins in the ileum and hypothalamus and promoting the expression of genes related to central 5-HT metabolism. The correlation analysis revealed that probiotic-enhanced bacteria were positively correlated, and probiotic-reduced bacteria were negatively correlated with tight junction-related gene expression, and 5-HT metabolism, and butyric acid levels. Overall, our findings indicate that dietary supplementation with Lactobacillus rhamnosus LR-32 can reduce antibiotic-induced FP in laying hens and is a promising treatment to improve the welfare of domestic birds

    Intermittent Hypoxia Composite Abnormal Glucose Metabolism-Mediated Atherosclerosis In Vitro and In Vivo: The Role of SREBP-1

    No full text
    Objective. The aim of this study was to establish a 3T3-L1 adipocyte model and ApoE−/− mouse model of intermittent hypoxia (IH) composite abnormal glucose metabolism (AGM) in vitro and in vivo and explore their synergistic damage effect leading to atherosclerosis (AS) and the influence of SREBP-1 signaling molecule-related mechanisms. Methods. Mature 3T3-L1 adipocytes were cultured with complete culture medium containing DEX 1×106 mol/L for 96 h to establish an AGM-3T3-L1 adipocyte model. Then, AGM-3T3-L1 adipocytes were treated with IH for 0 cycles, 2 cycles, 4 cycles, 8 cycles, 16 cycles, and 32 cycles and sustained hypoxia (SH). ApoE−/− mice were treated with high-fat diet and injection of STZ solution to establish an AGM-ApoE−/− mouse model. A total of 16 AGM-ApoE−/− mice were randomly and averagely divided into the normoxic control group (NC) and model group (CIH). AGM-ApoE−/− mice of the CIH group were treated with IH, which meant that the oxygen concentration fell to 10±0.5% in the first 90 seconds of one cycle and then increased to 21±0.5% in the later 90 seconds, continuous for eight hours per day (09 : 00-17 : 00) with a total of eight weeks. Eight C57BL/6J mice were used as the blank control group (Con) which was fed with conventional diet. qPCR and Western blotting were used to detect the expression level of SREBP-1c, FAS, and IRS-1. Oil Red O staining was used to compare the plaque of the aorta among each mouse group. Results. As a result, within 32 cycles of IH, mRNA and protein expression levels of SREBP-1c and FAS in AGM-3T3-L1 adipocytes were elevated with the increase in IH cycles; the mRNA expression of IRS-1 was decreased after IH 32 cycles and lower than that of the SH group. For the study in vivo, Oil Red O staining showed a more obvious AS aortic plaque in the CIH group. After CIH treatment of 4 w and 8 w, fasting blood glucose (FBG) of the NC group and CIH group was higher than that of the Con group, and the insulin level of the CIH group was higher than that of the Con group after IH treatment of 8 w. The expressions of the IRS-1 mRNA level in the aorta, skeletal muscle, and liver of the CIH group were lower than those in the Con group. The mRNA and protein expression of SREBP-1c and its downstream molecule FAS in the aorta, skeletal muscle, and liver significantly enhanced in the CIH group in contrast with those in the Con group. Conclusion. The CIH composite AGM could promote the progress of AS, which might be related to the modulation of the expression of SREBP-1-related molecular pathways

    Malfunctioned inflammatory response and serotonin metabolism at the microbiota-gut-brain axis drive feather pecking behavior in laying hens

    No full text
    ABSTRACT: Feather pecking (FP) is a multifactorial abnormal behavior in laying hens where they display harmful pecks in conspecifics. FP has been associated with the altered functioning of the microbiome-gut-brain axis affecting host emotions and social behavior. The altered levels of serotonin (5-HT), a key monoaminergic neurotransmitter at both terminals of the gut-brain axis, affect the development of abnormal behavior, such as FP in laying hens. However, the underlying mechanism involving reciprocal interactions along the microbiota-gut-brain axis, particularly about the metabolism of 5-HT, remains unclear in FP phenotypes. This study examined the microbiota diversity, intestinal microbial metabolites, inflammatory responses, and 5-HT metabolism in divergently selected high (HFP; n = 8) and low (LFP; n = 8) FP hens to investigate the possible interconnections between FP behavior and the examined parameters. The 16S rRNA analysis revealed that compared to LFP birds, the gut microbiota of HFP birds exhibited a decrease in the abundance of phylum Firmicutes and genera Lactobacillus, while an increase in the abundance of phylum Proteobacteria and genera Escherichia Shigella and Desulfovibrio. Furthermore, the intestinal differential metabolites associated with FP phenotypes were mainly enriched in the tryptophan metabolic pathway. HFP birds had higher tryptophan metabolites and possibly a more responsive immune system compared to the LFP birds. This was indirectly supported by altered TNF-α levels in the serum and expression of inflammatory factor in the gut and brain. Moreover, HFP birds had lower serum levels of tryptophan and 5-HT compared to LFP birds, which was consistent with the downregulation of 5-HT metabolism-related genes in the brain of HFP birds. The correlation analysis revealed that genera Lactobacillus and Desulfovibrio were associated with differences in intestinal metabolites, 5-HT metabolism, and inflammatory response between the LFP and HFP birds. In conclusion, differences in the cecal microbiota profile, immune response and 5-HT metabolism drive FP phenotypes, which could be associated with the gut abundance of genera Lactobacillus and Desulfovibrio

    Reductive-Responsive, Single-Molecular-Layer Polymer Nanocapsules Prepared by Lateral-Functionalized Pillar[5]arenes for Targeting Anticancer Drug Delivery

    No full text
    Herein, a new reductive-responsive pillar[5]­arene-based, single-molecule-layer polymer nanocapsule is constructed for drug delivery. The functionalized system shows good biocompatibility, efficient internalization into targeted cells and obvious triggered release of entrapped drugs in a reducing environment such as cytoplasm. Besides, this smart vehicle loaded with anticancer drug shows excellent inhibition for tumor cell proliferation and exhibits low side effect on normal cells. This work not only demonstrates the development of a new reductive-responsive single molecular layer polymer nanocapsule for anticancer drug targeting delivery but also extends the design of smart materials for biomedical applications
    corecore